skip to main content

Title: A high conductivity oxide–sulfide composite lithium superionic conductor

We fabricated a hybrid superionic conductor using the space charge effect between the LLZO and LPS interfaces. This space-charge effect resulted in an improvement over the individual bulk conductivities of the two systems. Sample with higher weight fractions of LLZO are limited by the porosity and grain boundary resistance arising from non-sintered membranes. Furthermore, by combining the properties of LLZO and LPS, the high temperature sintering step has been avoided thus facilitating easier materials processing. The interfacial resistances were also measured to be minimal at ambient conditions. Our procedure thus opens a new avenue for improving the ionic conductivity and electrochemical properties of existing solid state electrolytes. High frequency impedance analyses could aid in resolving the ionic conductivity contributions from the space charge layer in the higher conducting composites while mechanical property investigations could illustrate an improvement in the composite electrolyte in comparison with the crystalline LPS membranes.
Authors:
 [1] ;  [1] ;  [1] ;  [1] ;  [2] ;  [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division
Publication Date:
OSTI Identifier:
1121804
DOE Contract Number:
AC05-00OR22725
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Materials Chemistry. A; Journal Volume: 2; Journal Issue: 12
Publisher:
Royal Society of Chemistry
Research Org:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)
Sponsoring Org:
USDOE Office of Science (SC)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY solid electrolytes; batteries; energy storage