skip to main content

Title: Phosphate-Containing Polyethylene Glycol Polymers Prevent Lethal Sepsis by Multidrug-Resistant Pathogens

The gastrointestinal tract is the primary site of colonization for multi-drug resistant healthcare associated pathogens (HAPs) that are the principal source and cause of life-threatening infections in critically ill patients. We previously identified a high molecular weight co-polymer (PEG15-20) with mucoadhesive and cytoprotective actions on the intestinal epithelium. In this report we covalently bonded phosphate (Pi) to PEG15-20 ( termed Pi-PEG15-20) to enhance its cytoprotective activity against microbial virulence activation and invasion based on our previous work showing that Pi is a key environmental cue regulating microbial virulence across pathogens of clinical importance to hospitalized patients. We demonstrated that Pi-PEG15-20 can suppress phosphate-, iron-, and quorum sensing signal- mediated activation of bacterial virulence as well as inhibit intestinal epithelial IL-8 release during lipopolysaccharide (LPS) exposure. Pi-PEG15-20 also prevented mortality in C. elegans and mice exposed to several highly virulent and antibiotic(?)-resistant health care acquired pathogens (HAPs) while preserving the normal microbiota. Intestinal application Pi-PEG 15-20 has the potential to be a useful agent to prevent the pathogenic activation of microbes during critical illness where exposure to HAPs is ubiquitous.
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publication Date:
OSTI Identifier:
Report Number(s):
40072; 400412000
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Antimicrobial Agents and Chemotherapy, 58(2):966
Research Org:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
Sponsoring Org:
Country of Publication:
United States
Environmental Molecular Sciences Laboratory