skip to main content

Title: Characterization of structural defects in nuclear graphite IG-110 and NBG-18

Nuclear graphite IG-110 and NBG-18 were examined using X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscope (SEM) and high resolution transmission electron microscope (HR-TEM) to understand the structure and microstructure of nuclear graphite. The lattice parameter (a), degree of graphitization ( ), crystallite size parallel and perpendicular to c-direction (Lc and L ), anisotropy (B), as well as in-plane crystallite size (La) were calculated and compared based on XRD patterns and Raman spectra. Results indicate that IG-110 has a larger crystallite size and higher degree of graphitization, but lower anisotropy than NBG-18. These differences are attributed to the properties of coke source and manufacturing processes. Additionally, the shape of the pores and crystallized filler particles, the interface between binders and fillers, Mrozowski cracks and nano-cracks, and the defects of disclination were observed and characterized from SEM and HR-TEM images. The similarities and differences in microstructure between IG-110 and NBG-18 are discussed. The results in this work provide useful information to guide selection of nuclear graphite for the design of next generation nuclear plants (NGNP).
Authors:
; ; ;
Publication Date:
OSTI Identifier:
1120820
Report Number(s):
INL/JOU-14-31307
Journal ID: ISSN 0022-3115
DOE Contract Number:
DE-AC07-05ID14517
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Nuclear Materials; Journal Volume: 446; Journal Issue: 1 - 3
Research Org:
Idaho National Laboratory (INL)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
99 GENERAL AND MISCELLANEOUS graphite