skip to main content

Title: Synthesis and structural study of Ti-rich Mg-Ti hydrides

Mg xTi 1-x (x = 0.15, 0.25, 0.35) alloys were synthesized by means of ball milling. Under a hydrogen pressure of 8 MPa at 423 K these Mg–Ti alloys formed a hydride phase with a face centered cubic (FCC) structure. The hydride for x = 0.25 consisted of single Mg 0.25Ti 0.75H 1.62 FCC phase but TiH 2 and MgH 2 phases were also formed in the hydrides for x = 0.15 and 0.35, respectively. X-ray diffraction patterns and the atomic pair distribution function indicated that numbers of stacking faults were introduced. There was no sign of segregation between Mg and Ti in Mg 0.25Ti 0.75H 1.62. Electronic structure of Mg 0.25Ti 0.75H 1.62 was different from those of MgH 2 and TiH 2, which was demonstrated by 1H nuclear magnetic resonance. This strongly suggested that stable Mg–Ti hydride phase was formed in the metal composition of Mg 0.25Ti 0.75 without disproportion into MgH 2 and TiH 2.
; ; ; ; ; ;  [1] ;  [2] ;  [2]
  2. (
Publication Date:
OSTI Identifier:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Alloys and Compounds; Journal Volume: 593; Journal Issue: 04, 2014
Research Org:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Org:
Country of Publication:
United States