skip to main content

Title: Rolling Element Bearing Stiffness Matrix Determination (Presentation)

Current theoretical bearing models differ in their stiffness estimates because of different model assumptions. In this study, a finite element/contact mechanics model is developed for rolling element bearings with the focus of obtaining accurate bearing stiffness for a wide range of bearing types and parameters. A combined surface integral and finite element method is used to solve for the contact mechanics between the rolling elements and races. This model captures the time-dependent characteristics of the bearing contact due to the orbital motion of the rolling elements. A numerical method is developed to determine the full bearing stiffness matrix corresponding to two radial, one axial, and two angular coordinates; the rotation about the shaft axis is free by design. This proposed stiffness determination method is validated against experiments in the literature and compared to existing analytical models and widely used advanced computational methods. The fully-populated stiffness matrix demonstrates the coupling between bearing radial, axial, and tilting bearing deflections.
Authors:
;
Publication Date:
OSTI Identifier:
1115768
Report Number(s):
NREL/PR-5000-60639
DOE Contract Number:
AC36-08GO28308
Resource Type:
Conference
Resource Relation:
Related Information: NREL (National Renewable Energy Laboratory)
Research Org:
National Renewable Energy Laboratory (NREL), Golden, CO.
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy Wind and Water Power Technologies Office
Country of Publication:
United States
Language:
English
Subject:
17 WIND ENERGY; 42 ENGINEERING ROLLING ELEMENT; BEARING; STIFFNESS; FINITE ELEMENT; CONTACT; NREL