skip to main content

SciTech ConnectSciTech Connect

Title: Characterization of the NPOD3 Detectors in MCNP5 and MCNP6

Researchers performed a series of measurements in May 2012 to characterize the NPOD3 detector systems. The detectors were placed in varying states of disassembly to determine the effect of individual components on detection efficiency. A 4.5 kg α-phase Pu sphere known as the Los Alamos BeRP Ball was used as the SNM source in both a bare configuration and reflected by varying thicknesses of polyethylene. A set of simulations matching the experimental setups were run and the data were compared to the measured data. The total and leakage multiplication and the inferred k values were determined for both the simulations and the measurements. Table 3 shows a comparison of the results from MCNP6 and MCNP5 with the list-mode patch to the measured results. The count rates for the calculated results were obtained by dividing the total line count in the list-mode file (equivalent to the total number of absorptions in the NPOD detectors) by the total run time. The count rates are identical for both codes, and they both produce the same multiplicity and inferred k values regardless of measurement time as expected.
Authors:
 [1] ;  [1] ;  [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
OSTI Identifier:
1115551
Report Number(s):
LA-UR--14-20342
TRN: US1500365
DOE Contract Number:
AC52-06NA25396
Resource Type:
Technical Report
Research Org:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA)
Country of Publication:
United States
Language:
English
Subject:
73 NUCLEAR PHYSICS AND RADIATION PHYSICS; 46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; NEUTRON DETECTORS; PLUTONIUM-ALPHA; COMPARATIVE EVALUATIONS; POLYETHYLENES; COUNTING RATES; ABSORPTION; M CIDES; COMPUTERIZED SIMULATION; NEUTRON LEAKAGE; MULTIPLICATION FACTORS; THICKNESS; CONFIGURATION; EFFICIENCY; SPHERES