skip to main content

Title: Fullerene "Superhalogen" Radicals: The Substituent Effect on Electronic Properties of 1,7,11,24,27-C60X5

Hexasubstituted fullerenes with the skew pentagonal pyramid (SPP) addition pattern are predominantly formed in many types of reactions and represent important and versatile building blocks for supramolecular chemistry, biomedical and optoelectronic applications. Regioselective synthesis and characterization of the new SPP derivative, C60(CF3)4(CN)H, in this work led us to the experimental identification of the new family of "superhalogen fullerene radicals", species with the gas-phase electron affinity higher than that of the most electronegative halogens, F and Cl. Low-temperature photoelectron spectroscopy and DFT studies of different C60X5 radicals reveal a profound effect of X groups on their electron affinities (EA), which vary from 2.76 eV (X = CH3) to 4.47 eV (X= CN). The measured gas-phase EA of the newly synthesized C60(CF3)4CN equals 4.28 (1) eV, which is ca. 1 eV higher than the EA of Cl atom. An observed remarkable stability of C60(CF3)4CN– in solution under ambient conditions opens new venues for design of air-stable molecular complexes and salts for supramolecular structures of electroactive functional materials.
Authors:
; ; ; ; ; ;
Publication Date:
OSTI Identifier:
1114884
Report Number(s):
PNNL-SA-98359
46893; KC0301020
DOE Contract Number:
AC05-76RL01830
Resource Type:
Journal Article
Resource Relation:
Journal Name: Chemistry - A European Journal, 19(45):15404-15409
Research Org:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
fullerene; electron affinity; photoelectron spectroscopy; superhalogen; radical; Environmental Molecular Sciences Laboratory