skip to main content

Title: MAGGIE Component 1: Identification and Purification of Native and Recombinant Multiprotein Complexes and Modified Proteins from Pyrococcus furiosus

Virtualy all cellular processes are carried out by dynamic molecular assemblies or multiprotein complexes (PCs), the composition of which is largely unknown. Structural genomics efforts have demonstrated that less than 25% of the genes in a given prokaryotic genome will yield stable, soluble proteins when expressed using a one-ORF-at-a-time approach. We proposed that much of the remaining 75% of the genes encode proteins that are part of multiprotein complexes or are modified post-translationally, for example, with metals. The problem is that PCs and metalloproteins (MPs) cannot be accurately predicted on a genome-wide scale. The only solution to this dilemma is to experimentally determine PCs and MPs in biomass of a model organism and to develop analytical tools that can then be applied to the biomass of any other organism. In other words, organisms themselves must be analyzed to identify their PCs and MPs: “native proteomes” must be determined. This information can then be utilized to design multiple ORF expression systems to produce recombinant forms of PCs and MPs. Moreover, the information and utility of this approach can be enhanced by using a hyperthermophile, one that grows optimally at 100°C, as a model organism. By analyzing the native proteome at closemore » to 100 °C below the optimum growth temperature, we will trap reversible and dynamic complexes, thereby enabling their identification, purification, and subsequent characterization. The model organism for the current study is Pyrococcus furiosus, a hyperthermophilic archaeon that grows optimally at 100°C. It is grown up to 600-liter scale and kg quantities of biomass are available. In this project we identified native PCs and MPs using P. furiosus biomass (with MS/MS analyses to identify proteins by component 4). In addition, we provided samples of abundant native PCs and MPs for structural characterization (using SAXS by component 5). We also designed and evaluated generic bioinformatics and experimental protocols for PC and MP production in other prokaryotes of DOE interest. The research resulted in ten peer-reviewed publications including in Nature and Nature Methods.« less
 [1] ;
  1. University of Georgia
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Technical Report
Research Org:
University of Georgia
Sponsoring Org:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
Contributing Orgs:
University of Georgia, Lawrence Berkeley National Laboratory, Scripps Research Institute, Institute for Systems Biology.
Country of Publication:
United States