skip to main content

Title: UV Excited Photoacoustic Raman

To summarize, our efforts and findings are as follows: we analyzed the theoretical system performance using known PARS theory coupled with an acoustic detector model to estimate the expected signal-­to-noise ratio (SNR). The system model comprised a mathematical model of the Raman process leading to a prediction of the temperature change in the active region; a thermoacoustic gas prediction of the radiated pressure field (amplitude and pulse shape); and the receiver response for an acoustic microphone, including a simple model of the receiver circuitry (filters, integrators, etc.). Based on the PARS experimental parameters in Appendix B, the model predicted a PARS signal with pressure peak of 7 Pa and duration slightly longer than 2 ms at a distance of 7 mm from the focal spot when acoustic dissipation is not included. An analytical model of a PARS signal with acoustic dissipation was constructed but the numerical calculation is limited to gains of <1% of the experimental value. For these lower gains, the model predicts spreading of the signal.
Authors:
 [1] ;  [1] ;  [1] ;  [1] ;  [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
OSTI Identifier:
1113407
Report Number(s):
LLNL-TR--646859
DOE Contract Number:
W-7405-ENG-48
Resource Type:
Technical Report
Research Org:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUMM MECHANICS, GENERAL PHYSICS