skip to main content

Title: DE-EE0000319 Final Technical Report [National Open-ocean Energy Laboratory]

Under the authorization provided by Section 634 of the Energy Independence and Security Act of 2007 (P.L. 110-140), in 2009 FAU was awarded U.S. Congressionally Directed Program (CDP) funding through the U.S. Department of Energy (DOE) to investigate and develop technologies to harness the energy of the Florida Current as a source of clean, renewable, base-load power for Florida and the U.S. A second CDP award in 2010 provided additional funding in order to enhance and extend FAU’s activities. These two CDPs in 2009 and 2010 were combined into a single DOE grant, DE-EE0000319, and are the subject of this report. Subsequently, in July 2010 funding was made available under a separate contract, DE-EE0004200. Under that funding, DOE’s Wind and Water Power Program designated FAU’s state of Florida marine renewable energy (MRE) center as the Southeast National Marine Renewable Energy Center (SNMREC). This report discusses SNMREC activities funded by the DE-EE0000319 grant, but will make reference, as appropriate, to activities that require further investigation under the follow-on grant. The concept of extracting energy from the motions of the oceans has a long history. However, implementation on large scales of the technologies to effect renewable energy recovery from waves, tides, andmore » open-ocean currents is relatively recent. DOE’s establishment of SNMREC recognizes a significant potential for ocean current energy recovery associated with the (relatively) high-speed Florida Current, the reach of the Gulf Stream System flowing through the Straits of Florida, between the Florida Peninsula and the Bahamas Archipelago. The proximity of the very large electrical load center of southeast Florida’s metropolitan area to the resource itself makes this potential all the more attractive. As attractive as this potential energy source is, it is not without its challenges. Although the technology is conceptually simple, its design and implementation in a commercially-viable fashion presents a variety of challenges. Beyond the technology itself (and, especially, the effects on the technology of the harsh oceanic environment), it is important to consider the possible environmental impacts of commercial-scale implementation of oceanic energy extraction. Further, because such implementation represents a completely new undertaking, the human resources required do not exist, so education and training programs are critical to eventual success. This project, establishing a national open-ocean energy laboratory, was designed to address each of these three challenges in a flexible framework allowing for adaptive management as the project proceeded. In particular: the technology challenge, including resource assessment, evolved during the project to recognize and address the need for a national testing facility in the ocean for small-scale prototype MRE systems developed by industry; the environmental challenge became formalized and expanded during the permitting process for such a testing facility; and the human resources/societal challenges, both in terms of the need for education and training and in terms of public acceptance of MRE, stimulated a robust outreach program far beyond that originally envisioned at SNMREC. While all of these activities at SNMREC are ongoing, a number of significant milestones (in addition to the contributions listed in the appendices) were achieved under the auspices of this award. These include: Planning and site selection for the first-phase test facility, offshore of Dania Beach, FL, including some equipment for the facility, submission of an Interim Policy Lease Application to the U.S. Department of Interior’s Bureau of Ocean Energy Management (BOEM), and completion of an Environmental Assessment by BOEM and a positive Consistency Determination by the State of Florida; Measurements using acoustic profilers of the current structure and variability in the vicinity of the site under a variety of weather conditions, seasons and time durations; Design and implementation of instrumentation for the first phase of the offshore testing facility, the wet- and top-side data acquisition systems, and shore-based analysis systems; Implementation of a laboratory-scale dynamometer system to test generators of up to 25 kW capacity using real-world (simulated) forcing; Completion of 24 months of (airborne) marine vertebrate surveys and associated analysis of sea turtle offshore activity, marine mammal vocalization research, and ocean current turbine hydrodynamic noise characterization; Development of a secondary-school (nominally grade 10) curriculum about hydrokinetic MRE, “Energy from the Oceans: The New Renewable”, and training of over 200 high-school teachers in its use and in how to educate their colleagues in application of the material in the classroom; Presentations to over 50 interested civic groups in the region on various aspects of MRE in SE Florida A series of public lectures to over 600 residents of south Florida to provide broader education on MRE. Development of an interactive kiosk for installation in local science museums. These, and other accomplishments detailed in this report contribute to a comprehensive ongoing program at the SNMREC to support the affordable, responsible, and achievable commercialization of MRE. Many of the tasks of this award are continued or will be verified with follow-on funding DE-EE0004200, and its goal: the installation of the world’s first offshore ocean current turbine testing and validation capability.« less
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Technical Report
Research Org:
Florida Atlantic Univeristy, Boca Raton, FL
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
Country of Publication:
United States