skip to main content

Title: High energy X-ray diffraction measurement of residual stresses in a monolithic aluminum clad uranium–10 wt% molybdenum fuel plate assembly

Residual stresses are expected in monolithic, aluminum clad uranium 10 wt% molybdenum (U–10Mo) nuclear fuel plates because of the large mismatch in thermal expansion between the two bonded materials. The full residual stress tensor of the U–10Mo foil in a fuel plate assembly was mapped with 0.1 mm resolution using high-energy (86 keV) X-ray diffraction. The in-plane stresses in the U–10Mo foil are strongly compressive, roughly -250 MPa in the longitudinal direction and -140 MPa in the transverse direction near the center of the fuel foil. The normal component of the stress is weakly compressive near the center of the foil and tensile near the corner. The disparity in the residual stress between the two in-plane directions far from the edges and the tensile normal stress suggest that plastic deformation in the aluminum cladding during fabrication by hot isostatic pressing also contributes to the residual stress field. A tensile in-plane residual stress is presumed to be present in the aluminum cladding to balance the large in-plane compressive stresses in the U–10Mo fuel foil, but cannot be directly measured with the current technique due to large grain size.
; ; ; ; ; ;
Publication Date:
OSTI Identifier:
Report Number(s):
Journal ID: ISSN 0022-3115
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Nuclear Materials; Journal Volume: 441; Journal Issue: 1 - 3
Research Org:
Idaho National Laboratory (INL)
Sponsoring Org:
Country of Publication:
United States
99 GENERAL AND MISCELLANEOUS monolithic aluminum clad uranium; x-ray refraction