skip to main content

Title: Microstructural Modeling of Thermal Conductivity of High Burn-up Mixed Oxide Fuel

Predicting the thermal conductivity of oxide fuels as a function of burn-up and temperature is fundamental to the efficient and safe operation of nuclear reactors. However, modeling the thermal conductivity of fuel is greatly complicated by the radially inhomogeneous nature of irradiated fuel in both composition and microstructure. In this work, radially and temperature-dependent models for effective thermal conductivity were developed utilizing optical micrographs of high burn-up mixed oxide fuel. The micrographs were employed to create finite element meshes with the OOF2 software. The meshes were then used to calculate the effective thermal conductivity of the microstructures using the BISON fuel performance code. The new thermal conductivity models were used to calculate thermal profiles at end of life for the fuel pellets. These results were compared to thermal conductivity models from the literature, and comparison between the new finite element-based thermal conductivity model and the Duriez–Lucuta model was favorable.
; ; ;
Publication Date:
OSTI Identifier:
Report Number(s):
Journal ID: ISSN 0022-3115; TRN: US1400343
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Nuclear Materials; Journal Volume: 444; Journal Issue: 1-3
Research Org:
Idaho National Laboratory (INL), Idaho Falls, ID (United States)
Sponsoring Org:
USDOE Office of Nuclear Energy (NE)
Country of Publication:
United States
36 MATERIALS SCIENCE microstructural modeling; ; MIXED OXIDE FUELS