skip to main content

SciTech ConnectSciTech Connect

Title: Analysis and Synthesis of Load Forecasting Data for Renewable Integration Studies: Preprint

As renewable energy constitutes greater portions of the generation fleet, the importance of modeling uncertainty as part of integration studies also increases. In pursuit of optimal system operations, it is important to capture not only the definitive behavior of power plants, but also the risks associated with systemwide interactions. This research examines the dependence of load forecast errors on external predictor variables such as temperature, day type, and time of day. The analysis was utilized to create statistically relevant instances of sequential load forecasts with only a time series of historic, measured load available. The creation of such load forecasts relies on Bayesian techniques for informing and updating the model, thus providing a basis for networked and adaptive load forecast models in future operational applications.
Authors:
; ; ;
Publication Date:
OSTI Identifier:
1110455
Report Number(s):
NREL/CP-5D00-60270
DOE Contract Number:
AC36-08GO28308
Resource Type:
Technical Report
Research Org:
National Renewable Energy Laboratory (NREL), Golden, CO.
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy Wind and Water Power Technologies Office
Country of Publication:
United States
Language:
English
Subject:
17 WIND ENERGY LOAD FORECASTING; POWER DEMAND; RENEWABLE INTEGRATION; BAYESIAN PROBABILITY; NATIONAL RENEWABLE ENERGY LABORATORY; NREL; Utilities