skip to main content

Title: Role of Point Defects on the Reactivity of Reconstructed Anatase Titanium Dioxide (001) Surface

The chemical reactivity of different surfaces of titanium dioxide (TiO2) has been the subject of extensive studies in recent decades. The anatase TiO2(001) and its (1x4) reconstructed surfaces were theoretically considered to be the most reactive and have been heavily pursued by synthetic chemists. However, the lack of direct experimental verification or determination of the active sites on these surfaces has caused controversy and debate. Here we report a systematic study on an anatase TiO2(001)-(1x4) surface by means of microscopic and spectroscopic techniques in combination with first-principles calculations. Two types of intrinsic point defects are identified, among which only the Ti3+ defect site on the reduced surface demonstrates considerable chemical activity. The perfect surface itself can be fully oxidized, but shows no obvious activity. Our findings suggest that the reactivity of the anatase TiO2(001) surface should depend on its reduction status, similar to that of rutile TiO2 surfaces.
; ; ; ; ; ; ; ; ; ;
Publication Date:
OSTI Identifier:
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Nature Communications, 4:2214
Research Org:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
Sponsoring Org:
Country of Publication:
United States
Environmental Molecular Sciences Laboratory