skip to main content

Title: Measurement of advective soil gas flux: Results of field and laboratory experiments with CO2

We modified our multi-channel, steady-state flow-through (SSFT), soil-CO2 flux monitoring system to include an array of inexpensive pyroelectric non-dispersive infrared detectors for full-range (0-100%) coverage of CO2 concentrations without dilution, and a larger-diameter vent tube. We then conducted field testing of this system from late July through mid-September 2010 at the Zero Emissions Research and Technology (ZERT) project site located in Bozeman, MT, and subsequently, laboratory testing at the Pacific Northwest National Laboratory (PNNL) in Richland, WA using a flux bucket filled with dry sand. In the field, an array of twenty-five SSFT and three non-steady-state (NSS) flux chambers was installed in a 10x4 m area, the long boundary of which was directly above a shallow (2-m depth) horizontal injection well located 0.5 m below the water table. Two additional chambers (one SSFT and one NSS) were installed 10 m from the well for background measurements. Volumetric soil moisture sensors were installed at each SSFT chamber to measure mean levels in the top 0.15 m of soil. A total flux of 52 kg CO2 d-1 was injected into the well for 27 d and the efflux from the soil was monitored by the chambers before, during, and for 27 dmore » after the injection. Overall, the results were consistent with those from previous years, showing a radial efflux pattern centered on a known “hot spot”, rapid responses to changes in injection rate and wind power, evidence for movement of the CO2 plume during the injection, and nominal flux levels from the SSFT chambers that were up to 6-fold higher than those measured by adjacent NSS chambers. Soil moisture levels varied during the experiment from moderate to near saturation with the highest levels occurring consistently at the hot spot. The effects of wind on measured flux were complex and decreased as soil moisture content increased. In the laboratory, flux bucket testing with the SSFT chamber showed large measured-flux enhancement due to the Venturi effect on the chamber vent, but an overall decrease in measured flux when wind also reached the sand surface. Flux-bucket tests at a high flux (comparable to that at the hot spot) also showed that the measured flux levels increase linearly with the chamber-flushing rate until the actual level is reached. At the SSFT chamber-flushing rate used in the field experiment the measured flux in the laboratory was only about a third of the actual flux. The ratio of measured to actual flux increased logarithmically as flux decreased, and reached parity at low levels typical of diffusive flux systems. Taken together, our results suggest that values for advective CO2 flux measured by SSFT and NSS chamber systems are likely to be significantly lower than the actual values due to back pressure developed in the chamber that diverts flux from entering the chamber. Chamber designs that counteract the back pressure and also avoid large Venturi effects associated with vent tubes, such as the SSFT with a narrow vent tube operated at a high chamber-flushing rate, are likely to yield flux measurements closer to the true values.« less
; ; ; ; ;
Publication Date:
OSTI Identifier:
Report Number(s):
25706; CE0300000
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Environmental Earth Sciences, 70(4):1717-1726
Research Org:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
Sponsoring Org:
Country of Publication:
United States
geologic carbon sequestration; soil gas flux; continuous monitoring; Zero Emissions Research and Technology Program; ZERT; Venturi effect; carbon dioxide; CO2; Environmental Molecular Sciences Laboratory