skip to main content

Title: Reliable Modeling of the Electronic Spectra of Realistic Uranium Complexes

We present an EOMCCSD (equation of motion coupled cluster with singles and doubles) study of excited states of the small [UO2]2+ and [UO2]+ model systems as well as the larger UV IO2(saldien) complex. In addition, the triples contribution within the EOMCCSDT and CR-EOMCCSD(T) (completely renormalized EOMCCSD with non-iterative triples) approaches for the [UO2]2+ and [UO2]+ systems as well as the active-space variant of the CR-EOMCCSD(T) method | CREOMCCSd(t) | for the UV IO2(saldien) molecule are investigated. The coupled cluster data was employed as benchmark to chose the "best" appropriate exchange--correlation functional for subsequent time-dependent density functional (TD-DFT) studies on the transition energies for closed-shell species. Furthermore, the influence of the saldien ligands on the electronic structure and excitation energies of the [UO2]+ molecule is discussed. The electronic excitations as well as their oscillator dipole strengths modeled with TD-DFT approach using the CAM-B3LYP exchange{correlation functional for the [UV O2(saldien)]- with explicit inclusion of two DMSOs are in good agreement with the experimental data of Takao et al. [Inorg. Chem. 49, 2349-2359, (2010)].
; ; ; ;
Publication Date:
OSTI Identifier:
Report Number(s):
44669; KC0302030
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics, 139(3):Article No. 034301
Research Org:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
Sponsoring Org:
Country of Publication:
United States
Modeling; spectra; uranium; equation of motion coupled cluster; molecule; time-dependent density functional; Environmental Molecular Sciences Laboratory