skip to main content

Title: Surface-Driven Sodium Ion Energy Storage in Nanocellular Carbon Foams

Sodium ion (Na+) batteries have attracted increased attention for energy storage due to the natural abundance of sodium, but their development is hindered by the poor intercalation property of Na+ in electrodes. This paper reports a detailed study of high capacity, high rate sodium ion energy storage in high-surface-area nanocellular carbon foams (NCCF). The energy storage mechanism is surface-driven reactions between Na+ and oxygen-containing functional groups on the surface of NCCF. The surface reaction, rather than a Na+ bulk intercalation reaction, leads to high rate performance and cycling stability due to the enhanced reaction kinetics and the absence of electrode structure change. The NCCF makes more surface area and surface functional groups available for the Na+ reaction. It delivers 152 mAh/g capacity at the rate of 0.1 A/g and a capacity retention of 90% for over 1600 cycles.
 [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1]
  1. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
Journal ID: ISSN 1530-6984; 47476; KC0203020; TE1400000
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Nano Letters; Journal Volume: 13; Journal Issue: 8
American Chemical Society
Research Org:
Pacific Northwest National Laboratory (PNNL), Richland, WA (United States), Environmental Molecular Sciences Laboratory (EMSL)
Sponsoring Org:
Country of Publication:
United States
25 ENERGY STORAGE energy storage; sodium battery; surface driven reaction; Environmental Molecular Sciences Laboratory