skip to main content

Title: Design and implementation of a marine animal alert system to support Marine Renewable Energy

Power extracted from fast moving tidal currents has been identified as a potential commercial-scale source of renewable energy. Device developers and utilities are pursuing deployment of prototype tidal turbines to assess technology viability, site feasibility, and environmental interactions. Deployment of prototype turbines requires permits from a range of regulatory authorities. Ensuring the safety of marine animals, particularly those under protection of the Endangered Species Act of 1973 (ESA) and the Marine Mammal Protection Act of 1972 has emerged as a key regulatory challenge for initial MHK deployments. The greatest perceived risk to marine animals is from strike by the rotating blades of tidal turbines. Development of the marine mammal alert system (MAAS) was undertaken to support monitoring and mitigation requirements for tidal turbine deployments. The prototype system development focused on Southern Resident killer whales (SRKW), an endangered population of killer whales that frequents Puget Sound and is intermittently present in the part of the sound where deployment of prototype tidal turbines is being considered. Passive acoustics were selected as the primary means because of the vocal nature of these animals. The MAAS passive acoustic system consists of two-stage process involving the use of an energy detector and a spectrogram-based classifiermore » to distinguish between SKRW’s calls and noise. A prototype consisting of two 2D symmetrical star arrays separated by 20 m center to center was built and evaluated in the waters of Sequim Bay using whale call playback.« less
; ; ; ; ; ; ; ;
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Marine Technology Society Journal, 47(4):113-121
Research Org:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org:
Country of Publication:
United States
tidal power; killer whales; passive acoustics; renewable energy