skip to main content

Title: Engineering phenolics metabolism in the grasses using transcription factors

The economical competitiveness of agriculture-derived biofuels can be significantly enhanced by increasing biomass/acre yields and by furnishing the desired carbon balance for facilitating liquid fuel production (e.g., ethanol) or for high-energy solid waste availability to be used as biopower (e.g., for electricity production). Biomass production and carbon balance are tightly linked to the biosynthesis of phenolic compounds, which are found in crops and in agricultural residues either as lignins, as part of the cell wall, or as soluble phenolics which play a variety of functions in the biology of plants. The grasses, in particular maize, provide the single major source of agricultural biomass, offering significant opportunities for increasing renewable fuel production. Our laboratory has pioneered the use of transcription factors for manipulating plant metabolic pathways, an approach that will be applied here towards altering the composition of phenolic compounds in maize. Previously, we identified a small group of ten maize R2R3-MYB transcription factors with all the characteristics of regulators of different aspects of phenolic biosynthesis. Here, we propose to investigate the participation of these R2R3-MYB factors in the regulation of soluble and insoluble maize phenolics, using a combination of over-expression and down-regulation of these transcription factors in transgenic maize culturedmore » cells and in maize plants. Maize cells and plants altered in the activity of these regulatory proteins will be analyzed for phenolic composition by targeted metabolic profiling. Specifically, we will I) Investigate the effect of gain- and loss-of-function of a select group of R2R3-MYB transcription factors on the phenolic composition of maize plants and II) Identify the biosynthetic genes regulated by each of the selected R2R3-MYB factors. While a likely outcome of these studies are transgenic maize plants with altered phenolic composition, this research will significantly contribute to understanding how different branches of the phenolic biosynthetic grid are regulated. Given the conservation of the selected regulators in other grasses, results derived from this project are likely to provide important tools for the manipulation of phenolic compounds in other emerging biomass producers (e.g., switchgrass or miscanthus), either through conventional breeding techniques (e.g., marker-assisted breeding) or by using transgenic approaches.« less
  1. The Ohio State University
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Technical Report
Research Org:
The Ohio State University
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
09 BIOMASS FUELS; maize, phenylpropanoids, phenolics, transcription factors