skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Perspectives for computational modeling of cell replacement for neurological disorders

Journal Article · · Frontiers in Computational Neuroscience

Mathematical modeling of anatomically-constrained neural networks has provided significant insights regarding the response of networks to neurological disorders or injury. A logical extension of these models is to incorporate treatment regimens to investigate network responses to intervention. The addition of nascent neurons from stem cell precursors into damaged or diseased tissue has been used as a successful therapeutic tool in recent decades. Interestingly, models have been developed to examine the incorporation of new neurons into intact adult structures, particularly the dentate granule neurons of the hippocampus. These studies suggest that the unique properties of maturing neurons, can impact circuit behavior in unanticipated ways. In this perspective, we review the current status of models used to examine damaged CNS structures with particular focus on cortical damage due to stroke. Secondly, we suggest that computational modeling of cell replacement therapies can be made feasible by implementing approaches taken by current models of adult neurogenesis. The development of these models is critical for generating hypotheses regarding transplant therapies and improving outcomes by tailoring transplants to desired effects.

Research Organization:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Organization:
USDOE National Nuclear Security Administration (NNSA)
DOE Contract Number:
AC04-94AL85000
OSTI ID:
1078466
Report Number(s):
SAND2013-2927J; 447535
Journal Information:
Frontiers in Computational Neuroscience, Vol. 7, Issue 150; Related Information: Proposed for publication in Frontiers in Computational Neuroscience.; ISSN 1662-5188
Country of Publication:
United States
Language:
English

Similar Records

Perspectives for computational modeling of cell replacement for neurological disorders
Journal Article · Tue Jan 01 00:00:00 EST 2013 · Frontiers in Computational Neuroscience · OSTI ID:1078466

Downregulation of immediate-early genes linking to suppression of neuronal plasticity in rats after 28-day exposure to glycidol
Journal Article · Mon Sep 01 00:00:00 EDT 2014 · Toxicology and Applied Pharmacology · OSTI ID:1078466

A hypothesis for temporal coding of young and mature granule cells
Journal Article · Tue Jan 01 00:00:00 EST 2013 · Frontiers in Neuroscience (Online) · OSTI ID:1078466