skip to main content

Title: Monitoring Potential Transport of Radioactive Contaminants in Shallow Ephemeral Channels: FY 2012

The US Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Management’s Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 550, Smoky Contamination Area (CA), during precipitation runoff events. CAU 550 includes Corrective Action Sites (CASs) 08-23-03, 08-23-04, 08-23-06, and 08-23-07; these CASs are associated with tests designated Ceres, Smoky, Oberon, and Titania, respectively. Field measurements at the T-4 Atmospheric Test Site, CAU 370, suggest that radioactive material may have migrated along a shallow ephemeral drainage that traverses the site (NNSA/NSO, 2009). (It is not entirely clear how contaminated soils got into their present location at the T-4 Site, but flow to the channel has been redirected and the contamination does not appear to be migrating at present.) Although DRI initially looked at the CAU 370 site, given that it could not be confirmed that migration of contamination into the channel was natural, an alternate study site was selected at CAU 550. Aerial surveys in selected portions of the Nevada National Security Site (NNSS) also suggest that radioactivity may be migrating along ephemeral channels in Areas 3, 8,more » 11, 18, and 25 (Colton, 1999). Figure 1 shows the results of a low-elevation aerial survey (Colton, 1999) in Area 8. The numbered markers in Figure 1 identify ground zero for three safety experiments conducted in 1958 [Oberon (number 1), Ceres (number 2), and Titania (number 4)] and a weapons effects test conducted in 1964, Mudpack (number 3). This survey suggests contaminants may be migrating down the ephemeral channels that traverse CAU 550. Note particularly the lobe of higher concentration extending southeastward at the south end of the high concentration area marked as number 3 in Figure 1. CAU 550 in Area 8 of the NNSS was selected for the study because the aerial survey indicates that a channel mapped on the United States Geological Survey topographic map of the area traverses the south end of the area of surface contamination; this channel lies south of the point marked number 3 in Figure 1, and anecdotal information indicates that sediment has been deposited on the road bordering the southeast boundary of the CAU from an adjacent channel (Traynor, J, personal communication, 2011). Because contamination is particularly close to the boundary of CAU 550, Smoky CA, it is important to know if contaminants are moving, what meteorological conditions result in movement of contaminated soils, and what particle size fractions associated with contamination are involved. Closure plans are being developed for the CAUs on the NNSS. The closure plans may include post-closure monitoring for possible release of radioactive contaminants. Determining the potential for transport of contaminated soils under ambient climatic conditions will facilitate an appropriate closure design and post-closure monitoring program.« less
Authors:
; ; ;
Publication Date:
OSTI Identifier:
1068014
Report Number(s):
45249 DOE/NV/0000939-07
DOE Contract Number:
DE-NA0000939
Resource Type:
Technical Report
Research Org:
Desert Research Institute, Nevada University, Reno, NV (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA)
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES The US Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Management’s Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 550, Smoky Contamination Area (CA), during precipitation runoff events. CAU 550 includes Corrective Action Sites (CASs) 08-23-03, 08-23-04, 08-23-06, and 08-23-07; these CASs are associated with tests designated Ceres, Smoky, Oberon, and Titania, respectively. Field measurements at the T-4 Atmospheric Test Site, CAU 370, suggest that radioactive material may have migrated along a shallow ephemeral drainage that traverses the site (NNSA/NSO, 2009). (It is not entirely clear how contaminated soils got into their present location at the T-4 Site, but flow to the channel has been redirected and the contamination does not appear to be migrating at present.) Although DRI initially looked at the CAU 370 site, given that it could not be confirmed that migration of contamination into the channel was natural, an alternate study site was selected at CAU 550. Aerial surveys in selected portions of the Nevada National Security Site (NNSS) also suggest that radioactivity may be migrating along ephemeral channels in Areas 3, 8, 11, 18, and 25 (Colton, 1999). Figure 1 shows the results of a low-elevation aerial survey (Colton, 1999) in Area 8. The numbered markers in Figure 1 identify ground zero for three safety experiments conducted in 1958 [Oberon (number 1), Ceres (number 2), and Titania (number 4)] and a weapons effects test conducted in 1964, Mudpack (number 3). This survey suggests contaminants may be migrating down the ephemeral channels that traverse CAU 550. Note particularly the lobe of higher concentration extending southeastward at the south end of the high concentration area marked as number 3 in Figure 1. CAU 550 in Area 8 of the NNSS was selected for the study because the aerial survey indicates that a channel mapped on the United States Geological Survey topographic map of the area traverses the south end of the area of surface contamination; this channel lies south of the point marked number 3 in Figure 1, and anecdotal information indicates that sediment has been deposited on the road bordering the southeast boundary of the CAU from an adjacent channel (Traynor, J, personal communication, 2011). Because contamination is particularly close to the boundary of CAU 550, Smoky CA, it is important to know if contaminants are moving, what meteorological conditions result in movement of contaminated soils, and what particle size fractions associated with contamination are involved. Closure plans are being developed for the CAUs on the NNSS. The closure plans may include post-closure monitoring for possible release of radioactive contaminants. Determining the potential for transport of contaminated soils under ambient climatic conditions will facilitate an appropriate closure design and post-closure monitoring program.