skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Structure of Allophanate Hydrolase from Granulibacter bethesdensis Provides Insights into Substrate Specificity in the Amidase Signature Family

Journal Article · · Biochemistry
DOI:https://doi.org/10.1021/bi301242m· OSTI ID:1062429
 [1];  [1]
  1. Marquette Univ., Milwaukee, WI (United States)

Allophanate hydrolase (AH) catalyzes the hydrolysis of allophanate, an intermediate in atrazine degradation and urea catabolism pathways, to NH3 and CO2. AH belongs to the amidase signature family, which is characterized by a conserved block of 130 amino acids rich in Gly and Ser and a Ser-cis-Ser-Lys catalytic triad. In this study, the first structures of AH fromGranulibacter bethesdensis were determined, with and without the substrate analogue malonate, to 2.2 and 2.8 Å, respectively. The structures confirm the identity of the catalytic triad residues and reveal an altered dimerization interface that is not conserved in the amidase signature family. The structures also provide insights into previously unrecognized substrate specificity determinants in AH. Two residues, Tyr299 and Arg307, are within hydrogen bonding distance of a carboxylate moiety of malonate. Both Tyr299 and Arg307 were mutated, and the resulting modified enzymes revealed >3 order of magnitude reductions in both catalytic efficiency and substrate stringency. It is proposed that Tyr299 and Arg307 serve to anchor and orient the substrate for attack by the catalytic nucleophile, Ser172. The structure further suggests the presence of a unique C-terminal domain in AH. While this domain is conserved, it does not contribute to catalysis or to the structural integrity of the core domain, suggesting that it may play a role in mediating transient and specific interactions with the urea carboxylase component of urea amidolyase. Analysis of the AH active site architecture offers new insights into common determinants of catalysis and specificity among divergent members of the amidase signature family.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Organization:
NIGMS
DOE Contract Number:
AC02-06CH11357
OSTI ID:
1062429
Journal Information:
Biochemistry, Vol. 52, Issue (4) ; 01, 2013; ISSN 0006-2960
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
ENGLISH

Similar Records

Crystal structure analysis of a bacterial aryl acylamidase belonging to the amidase signature enzyme family
Journal Article · Fri Nov 13 00:00:00 EST 2015 · Biochemical and Biophysical Research Communications · OSTI ID:1062429

The Structure of the MUR1 GDP-mannose 4,67-deydratase from A. thaliana: Implications for Ligand Binding Specificity
Journal Article · Mon Mar 08 00:00:00 EST 2010 · Biochemistry-US · OSTI ID:1062429

Crystallization and preliminary X-ray diffraction analysis of the amidase domain of allophanate hydrolase from Pseudomonas sp. strain ADP
Journal Article · Wed Feb 19 00:00:00 EST 2014 · Acta crystallographica. Section F, Structural biology communications · OSTI ID:1062429

Related Subjects