skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High Level ab initio Predictions of the Energetics of mCO2•(H2O)n (n = 1-3, m = 1-12) Clusters

Journal Article · · Journal of Physical Chemistry A, 116(39):9718-9729
DOI:https://doi.org/10.1021/jp306594h· OSTI ID:1054052

Electronic structure calculations at the correlated molecular orbital theory and density functional theory levels have been used to generate a reliable set of clustering energies for up to three water molecules in carbon dioxide clusters up to n = 12. The structures and energetics are dominated by Lewis acid-base interactions with hydrogen bonding interactions playing a lesser energetic role. The actual binding energies are somewhat larger than might be expected. The correlated molecular orbital MP2 method and density functional theory with the ωB97X exchange-correlation functional provide good results for the energetics of the clusters but the B3LYP and ωB97X-D functionals do not. Seven CO2 molecules form the first solvent shell about a single H2O with four CO2 molecules interacting with the H2O via Lewis acid-base interactions, two CO2 interacting with the H2O by hydrogen bonds, and the seventh CO2 completing the shell. The Lewis acid-base and weak hydrogen bond interactions between the water molecules and the CO2 molecules are strong enough to disrupt the trimer ring configuration for as few as seven CO2 molecules. Calculated 13C NMR chemical shifts for mCO2•(H2O)n show little change with respect to the number of H2O or CO2 molecules in the cluster. The O-H stretching frequencies do exhibit shifts that can provide information about the interactions between water and CO2 molecules.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1054052
Report Number(s):
PNNL-SA-89930; 39937; KC0303020
Journal Information:
Journal of Physical Chemistry A, 116(39):9718-9729, Journal Name: Journal of Physical Chemistry A, 116(39):9718-9729
Country of Publication:
United States
Language:
English

Similar Records

ONIOM Study of Chemical Reactions in Microsolvation Clusters: (H2O)(n)CH3Cl+OH-(H2O)(m) (n+m = 1 and 2)
Journal Article · Sat Jul 07 00:00:00 EDT 2001 · Journal of Physical Chemistry A, 105(30):7185-7197 · OSTI ID:1054052

Stepwise hydration of the cyanide anion: A temperature-controlled photoelectron spectroscopy and ab initio computational study of CN-(H2O)n(n=2-5)
Journal Article · Sun Mar 28 00:00:00 EDT 2010 · Journal of Chemical Physics, 132(12):124306/1-10 · OSTI ID:1054052

The structure of the Calix[4]arene-(H2O) Cluster: The World’s Smallest Cup of Water
Journal Article · Thu Mar 11 00:00:00 EST 2010 · Journal of Physical Chemistry A, 114(9):2967-2972 · OSTI ID:1054052