skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Generalized Modeling of Enrichment Cascades That Include Minor Isotopes

Abstract

The monitoring of enrichment operations may require innovative analysis to allow for imperfect or missing data. The presence of minor isotopes may help or hurt - they can complicate a calculation or provide additional data to corroborate a calculation. However, they must be considered in a rigorous analysis, especially in cases involving reuse. This study considers matched-abundanceratio cascades that involve at least three isotopes and allows generalized input that does not require all feed assays or the enrichment factor to be specified. Calculations are based on the equations developed for the MSTAR code but are generalized to allow input of various combinations of assays, flows, and other cascade properties. Traditional cascade models have required specification of the enrichment factor, all feed assays, and the product and waste assays of the primary enriched component. The calculation would then produce the numbers of stages in the enriching and stripping sections and the remaining assays in waste and product streams. In cases where the enrichment factor or feed assays were not known, analysis was difficult or impossible. However, if other quantities are known (e.g., additional assays in waste or product streams), a reliable calculation is still possible with the new code, but suchmore » nonstandard input may introduce additional numerical difficulties into the calculation. Thus, the minimum input requirements for a stable solution are discussed, and a sample problem with a non-unique solution is described. Both heuristic and mathematically required guidelines are given to assist the application of cascade modeling to situations involving such non-standard input. As a result, this work provides both a calculational tool and specific guidance for evaluation of enrichment cascades in which traditional input data are either flawed or unknown. It is useful for cases involving minor isotopes, especially if the minor isotope assays are desired (or required) to be important contributors to the overall analysis.« less

Authors:
 [1]
  1. ORNL
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
Work for Others (WFO)
OSTI Identifier:
1050356
DOE Contract Number:  
DE-AC05-00OR22725
Resource Type:
Conference
Resource Relation:
Conference: 53rd Annual Meeting INMM, Orlando, FL, USA, 20120715, 20120719
Country of Publication:
United States
Language:
English
Subject:
99 GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE; EVALUATION; MONITORING; RECOMMENDATIONS; SIMULATION; SPECIFICATIONS; WASTES

Citation Formats

Weber, Charles F. Generalized Modeling of Enrichment Cascades That Include Minor Isotopes. United States: N. p., 2012. Web.
Weber, Charles F. Generalized Modeling of Enrichment Cascades That Include Minor Isotopes. United States.
Weber, Charles F. 2012. "Generalized Modeling of Enrichment Cascades That Include Minor Isotopes". United States.
@article{osti_1050356,
title = {Generalized Modeling of Enrichment Cascades That Include Minor Isotopes},
author = {Weber, Charles F},
abstractNote = {The monitoring of enrichment operations may require innovative analysis to allow for imperfect or missing data. The presence of minor isotopes may help or hurt - they can complicate a calculation or provide additional data to corroborate a calculation. However, they must be considered in a rigorous analysis, especially in cases involving reuse. This study considers matched-abundanceratio cascades that involve at least three isotopes and allows generalized input that does not require all feed assays or the enrichment factor to be specified. Calculations are based on the equations developed for the MSTAR code but are generalized to allow input of various combinations of assays, flows, and other cascade properties. Traditional cascade models have required specification of the enrichment factor, all feed assays, and the product and waste assays of the primary enriched component. The calculation would then produce the numbers of stages in the enriching and stripping sections and the remaining assays in waste and product streams. In cases where the enrichment factor or feed assays were not known, analysis was difficult or impossible. However, if other quantities are known (e.g., additional assays in waste or product streams), a reliable calculation is still possible with the new code, but such nonstandard input may introduce additional numerical difficulties into the calculation. Thus, the minimum input requirements for a stable solution are discussed, and a sample problem with a non-unique solution is described. Both heuristic and mathematically required guidelines are given to assist the application of cascade modeling to situations involving such non-standard input. As a result, this work provides both a calculational tool and specific guidance for evaluation of enrichment cascades in which traditional input data are either flawed or unknown. It is useful for cases involving minor isotopes, especially if the minor isotope assays are desired (or required) to be important contributors to the overall analysis.},
doi = {},
url = {https://www.osti.gov/biblio/1050356}, journal = {},
number = ,
volume = ,
place = {United States},
year = {Sun Jan 01 00:00:00 EST 2012},
month = {Sun Jan 01 00:00:00 EST 2012}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share: