skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Enhanced control of end-group composition in poly(3-hexylthiophene)s prepared by GRIM

Journal Article · · Journal of Polymer Science, Part A: Polymer Chemistry
DOI:https://doi.org/10.1002/pola.26057· OSTI ID:1044653

The ability to prepare well-defined semiconducting polymers is essential for understanding the link between structure and function in organic photovoltaic devices. A general method for enhanced control of the degree of functionality of end-functionalized poly(3-hexylthiophene)s (P3HT) prepared by Grignard Metathesis (GRIM) polymerization has been developed. In the absence of additives, the degree of functionality of end-functional P3HTs prepared by quenching of the GRIM polymerization with a Grignard reagent is dependent on the Grignard reagent utilized. In this study, additives such as styrene and 1-pentene are shown to alter the end-group composition of tolyl-functionalized P3HTs as determined by MALDI-TOF MS. In particular, when quenching the GRIM polymerization with tolylmagnesium bromide a modest decrease in the difunctional product is observed, and the yield of the monofunctional product increases significantly. Temperature and lithium chloride (LiCl) addition also play impactful roles. Monofunctional P3HT is found to be the major product (65%) when the functionalization is done in the presence of LiCl and styrene at 0oC, whereas in the absence of additives the monofunctional product is present at only 20%.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)
Sponsoring Organization:
USDOE Laboratory Directed Research and Development (LDRD) Program
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
1044653
Journal Information:
Journal of Polymer Science, Part A: Polymer Chemistry, Vol. 50, Issue 14; ISSN 0887-624X
Country of Publication:
United States
Language:
English