skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Microprobing the Molecular Spatial Distribution and Structural Architecture of Feed-type Sorghum Seed Tissue (Sorghum Bicolor L.) using the Synchrotron Radiation Infrared Microspectroscopy Technique

Abstract

Sorghum seed (Sorghum bicolor L.) has unique degradation and fermentation behaviours compared with other cereal grains such as wheat, barley and corn. This may be related to its cell and cell-wall architecture. The advanced synchrotron radiation infrared microspectroscopy (SR-IMS) technique enables the study of cell or living cell biochemistry within cellular dimensions. The objective of this study was to use the SR-IMS imaging technique to microprobe molecular spatial distribution and cell architecture of the sorghum seed tissue comprehensively. High-density mapping was carried out using SR-IMS on beamline U2B at the National Synchrotron Light Source (Brookhaven National Laboratory, NY, USA). Molecular images were systematically recorded from the outside to the inside of the seed tissue under various chemical functional groups and their ratios [peaks at {approx}1725 (carbonyl C=O ester), 1650 (amide I), 1657 (protein secondary structure {alpha}-helix), 1628 (protein secondary structure {beta}-sheet), 1550 (amide II), 1515 (aromatic compounds of lignin), 1428, 1371, 1245 (cellulosic compounds in plant seed tissue), 1025 (non-structural CHO, starch granules), 1246 (cellulosic material), 1160 (CHO), 1150 (CHO), 1080 (CHO), 930 (CHO), 860 (CHO), 3350 (OH and NH stretching), 2960 (CH{sub 3} anti-symmetric), 2929 (CH{sub 2} anti-symmetric), 2877 (CH{sub 3} symmetric) and 2848 cm{sup -1} (CH{sub 2} asymmetric)].more » The relative protein secondary structure {alpha}-helix to {beta}-sheet ratio image, protein amide I to starch granule ratio image, and anti-symmetric CH{sub 3} to CH{sub 2} ratio image were also investigated within the intact sorghum seed tissue. The results showed unique cell architecture, and the molecular spatial distribution and intensity in the sorghum seed tissue (which were analyzed through microprobe molecular imaging) were generated using SR-IMS. This imaging technique and methodology has high potential and could be used for scientists to develop specific cereal grain varieties with targeted food and feed quality, and can also be used to monitor the degree of grain maturity, grain damage, the fate of organic contaminants and the effect of chemical treatment on plant and grain seeds.« less

Authors:
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE SC OFFICE OF SCIENCE (SC)
OSTI Identifier:
1041900
Report Number(s):
BNL-97578-2012-JA
Journal ID: ISSN 0909-0495; JSYRES; TRN: US1202720
DOE Contract Number:  
DE-AC02-98CH10886
Resource Type:
Journal Article
Journal Name:
Journal of Synchrotron Radiation
Additional Journal Information:
Journal Volume: 18; Journal Issue: 5; Journal ID: ISSN 0909-0495
Country of Publication:
United States
Language:
English
Subject:
09 BIOMASS FUELS; 43 PARTICLE ACCELERATORS; AMIDES; ARCHITECTURE; BARLEY; BIOCHEMISTRY; CELL WALL; CEREALS; DIMENSIONS; FERMENTATION; FOOD; FUNCTIONALS; LIGNIN; MONITORS; NSLS; PLANT CELLS; PROTEINS; SEEDS; SORGHUM; SPATIAL DISTRIBUTION; STARCH; SYNCHROTRON RADIATION; SYNCHROTRONS; WHEAT

Citation Formats

Yu, P. Microprobing the Molecular Spatial Distribution and Structural Architecture of Feed-type Sorghum Seed Tissue (Sorghum Bicolor L.) using the Synchrotron Radiation Infrared Microspectroscopy Technique. United States: N. p., 2011. Web. doi:10.1107/S0909049511023727.
Yu, P. Microprobing the Molecular Spatial Distribution and Structural Architecture of Feed-type Sorghum Seed Tissue (Sorghum Bicolor L.) using the Synchrotron Radiation Infrared Microspectroscopy Technique. United States. https://doi.org/10.1107/S0909049511023727
Yu, P. 2011. "Microprobing the Molecular Spatial Distribution and Structural Architecture of Feed-type Sorghum Seed Tissue (Sorghum Bicolor L.) using the Synchrotron Radiation Infrared Microspectroscopy Technique". United States. https://doi.org/10.1107/S0909049511023727.
@article{osti_1041900,
title = {Microprobing the Molecular Spatial Distribution and Structural Architecture of Feed-type Sorghum Seed Tissue (Sorghum Bicolor L.) using the Synchrotron Radiation Infrared Microspectroscopy Technique},
author = {Yu, P},
abstractNote = {Sorghum seed (Sorghum bicolor L.) has unique degradation and fermentation behaviours compared with other cereal grains such as wheat, barley and corn. This may be related to its cell and cell-wall architecture. The advanced synchrotron radiation infrared microspectroscopy (SR-IMS) technique enables the study of cell or living cell biochemistry within cellular dimensions. The objective of this study was to use the SR-IMS imaging technique to microprobe molecular spatial distribution and cell architecture of the sorghum seed tissue comprehensively. High-density mapping was carried out using SR-IMS on beamline U2B at the National Synchrotron Light Source (Brookhaven National Laboratory, NY, USA). Molecular images were systematically recorded from the outside to the inside of the seed tissue under various chemical functional groups and their ratios [peaks at {approx}1725 (carbonyl C=O ester), 1650 (amide I), 1657 (protein secondary structure {alpha}-helix), 1628 (protein secondary structure {beta}-sheet), 1550 (amide II), 1515 (aromatic compounds of lignin), 1428, 1371, 1245 (cellulosic compounds in plant seed tissue), 1025 (non-structural CHO, starch granules), 1246 (cellulosic material), 1160 (CHO), 1150 (CHO), 1080 (CHO), 930 (CHO), 860 (CHO), 3350 (OH and NH stretching), 2960 (CH{sub 3} anti-symmetric), 2929 (CH{sub 2} anti-symmetric), 2877 (CH{sub 3} symmetric) and 2848 cm{sup -1} (CH{sub 2} asymmetric)]. The relative protein secondary structure {alpha}-helix to {beta}-sheet ratio image, protein amide I to starch granule ratio image, and anti-symmetric CH{sub 3} to CH{sub 2} ratio image were also investigated within the intact sorghum seed tissue. The results showed unique cell architecture, and the molecular spatial distribution and intensity in the sorghum seed tissue (which were analyzed through microprobe molecular imaging) were generated using SR-IMS. This imaging technique and methodology has high potential and could be used for scientists to develop specific cereal grain varieties with targeted food and feed quality, and can also be used to monitor the degree of grain maturity, grain damage, the fate of organic contaminants and the effect of chemical treatment on plant and grain seeds.},
doi = {10.1107/S0909049511023727},
url = {https://www.osti.gov/biblio/1041900}, journal = {Journal of Synchrotron Radiation},
issn = {0909-0495},
number = 5,
volume = 18,
place = {United States},
year = {Sat Dec 31 00:00:00 EST 2011},
month = {Sat Dec 31 00:00:00 EST 2011}
}