skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Memory effect in composites of liquid crystal and silica aerosil

Journal Article · · Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics (Print)

Aerosil silica nanoparticles dispersed in a liquid crystal (LC) possess the interesting property of keeping memory of an electric- or magnetic-field-induced orientation. Two types of memory have been identified: thermally erasable memory arising from the pinning of defect lines versus a 'permanent' memory where the orientation persists even after thermal cycling the samples up to the isotropic phase. To address the source of the latter type of memory, solid-state nuclear magnetic resonance spectroscopy and conventional x-ray diffraction (XRD) were first combined to characterize the LC orientational order as a function of multiple in-field temperature cycles. Microbeam XRD was then performed on aligned gels of different concentrations to gain knowledge of the structural properties at the origin of the memory effect. No detectable anisotropy of the gel or significant breaking of silica strands with heating ruled out the formation of an anisotropic silica network as the source of the permanent memory as previously proposed. Instead, support for a role of the surface memory effect, well known for planar substrates, in stabilizing the permanent memory was deduced from 'training' of the composites, that is, optimizing the orientational order through the thermal in-field cycling. The ability to train the composites is inversely proportional to the strength of the random-field disorder. The portion of thermally erasable memory also decreases as the silica density increases. We propose that the permanent memory originates from the surface memory effect operating at points of intersection in the silica network. These areas, where the LC is strongly confined with conflicted surface interactions, are trained to achieve an optimized orientation and subsequently act as sites from which the LC orientational order regrows after zero-field thermal cycling up to the isotropic phase.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Organization:
National Science Foundation (NSF)
OSTI ID:
1033000
Journal Information:
Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics (Print), Vol. 84, Issue 6; ISSN 1539-3755
Country of Publication:
United States
Language:
ENGLISH

Similar Records

High-resolution x-ray scattering study of the effect of quenched random disorder on the nematic-smectic-A transition
Journal Article · Fri Jun 15 00:00:00 EDT 2007 · Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics · OSTI ID:1033000

Calorimetric and small angle x-ray scattering study of phase transitions in octylcyanobiphenyl-aerosil dispersions
Journal Article · Sun Nov 01 00:00:00 EST 1998 · Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics · OSTI ID:1033000

Study of radiation-induced polymerization of vinyl monomers adsorbed on inorganic substances. VIII. Polymerization of styrene and methyl methacrylate adsorbed on aerosil
Journal Article · Thu Jan 01 00:00:00 EST 1976 · J. Polym. Sci., Polym. Chem. Ed.; (United States) · OSTI ID:1033000