skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Isothermal desulfation of pre-sulfated Pt-BaO/γ-Al2O3 lean NOx trap catalysts with H2: the effect of H2 concentration and the roles of CO2 and H2O

Journal Article · · Applied Catalysis. B, Environmental

The desulfation mechanisms of pre-sulfated Pt-BaO/{gamma}-Al{sub 2}O{sub 3} lean NOx trap catalysts were investigated under isothermal conditions (600 C) using H{sub 2} as the reductant. Sulfates were found to be reduced first with H{sub 2} to produce SO{sub 2}, followed by a reaction between SO{sub 2} and H{sub 2} to produce H{sub 2}S. Gas analysis during the rich pulse reveals that the sulfur removal efficiency is initially proportional to the H{sub 2} concentration. At constant H{sub 2} concentration the overall desulfation efficiency decreases in the order of H{sub 2}/CO{sub 2}/H{sub 2}O > H{sub 2}/CO{sub 2} > H{sub 2}/H{sub 2}O > H{sub 2}, as confirmed by XPS analysis of residual sulfur in the desulfated samples. H{sub 2}O limits the evolution of SO{sub 2} at an early stage of the rich pulse and enhances the production of H{sub 2}S in later stages of reduction. CO{sub 2} is involved in both the formation of COS and the production of H{sub 2}O (via the reverse water-gas shift reaction), therefore, resulting in an increased overall efficiency.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1032678
Report Number(s):
PNNL-SA-78545; ACBEE3; 35404; VT0401000; TRN: US201202%%278
Journal Information:
Applied Catalysis. B, Environmental, Vol. 111-112, Issue 1; ISSN 0926-3373
Country of Publication:
United States
Language:
English