skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structure and hydrogen adsorption properties in low density nanoporous carbons from simulations

Journal Article · · Carbon
 [1];  [2]
  1. University of Tennessee, Knoxville (UTK)
  2. ORNL

We systematically model the hydrogen adsorption in nanoporous carbons over a wide range of carbon bulk densities (0.6 - 2.4 g/cm3) by using tight binding molecular dynamics simulations for the carbon structures and thermodynamics calculations of the hydrogen adsorption. The resulting structures are in good agreement with the experimental data of ultra-microporous carbon (UMC), a wood-based activated carbon, as indicated by comparisons of the microstructure at atomic level, pair distribution function, and pore size distribution. The hydrogen adsorption calculations in carbon structures demonstrate both a promising hydrogen storage capacity (excess uptake of 1.33 wt% at 298K and 5 MPa, for carbon structures at the lower range of densities) and a reasonable heat of adsorption (12-22 kJ/mol). This work demonstrates that increasing the heat of adsorption does not necessarily increase the hydrogen uptake. In fact, the available adsorption volume is as important as the isosteric heat of adsorption for hydrogen storage in nanoporous carbons.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
1031533
Journal Information:
Carbon, Vol. 50, Issue 3; ISSN 0008-6223
Country of Publication:
United States
Language:
English