skip to main content

Title: Effect of numerical parameters on characterizing the hardening behavior of ductile uniaxial tension specimens.

Many problems of practical importance involve ductile materials that undergo very large strains, in many cases to the point of failure. Examples include structures subjected to impact or blast loads, energy absorbing devices subjected to significant crushing, cold-forming manufacturing processes and others. One of the most fundamental pieces of data that is required in the analysis of this kind of problems is the fit of the uniaxial stress-strain curve of the material. A series of experiments where mild steel plates were punctured with a conical indenter provided a motivation to characterize the true stress-strain curve until the point of failure of this material, which displayed significant ductility. The hardening curve was obtained using a finite element model of the tensile specimens that included a geometric imperfection in the form of a small reduction in the specimen width to initiate necking. An automated procedure iteratively adjusted the true stress-strain curve fit used as input until the predicted engineering stress-strain curve matched experimental measurements. Whereas the fitting is relatively trivial prior to reaching the ultimate engineering stress, the fit of the softening part of the engineering stress-stain curve is highly dependent on the finite element parameters such as element formulation and initialmore » geometry. Results by two hexahedral elements are compared. The first is a standard, under-integrated, uniform-strain element with hourglass control. The second is a modified selectively-reduced-integration element. In addition, the effects of element size, aspect ratio and hourglass control characteristics are investigated. The effect of adaptively refining the mesh based on the aspect ratio of the deformed elements is also considered. The results of the study indicate that for the plate puncture problem, characterizing the material with the same element formulation and size as used in the plate models is beneficial. On the other hand, using different element formulations, sizes or initial aspect ratios can lead to unreliable results.« less
Authors:
; ; ; ; ; ;
Publication Date:
OSTI Identifier:
1030391
Report Number(s):
SAND2010-7897C
TRN: US201124%%176
DOE Contract Number:
AC04-94AL85000
Resource Type:
Conference
Resource Relation:
Conference: Proposed for presentation at the American Society of Mechanical Engineers Internation Mechanical Engineering Congress and Exposition held November 15-18, 2010 in Vancouver, BC, Canada.
Research Org:
Sandia National Laboratories
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; ASPECT RATIO; CRUSHING; DEFECTS; DUCTILITY; ENGINEERS; GEOMETRY; HARDENING; MANUFACTURING; REFINING; STEELS; STRAINS