skip to main content

Title: Model Predictive Control of Integrated Gasification Combined Cycle Power Plants

The primary project objectives were to understand how the process design of an integrated gasification combined cycle (IGCC) power plant affects the dynamic operability and controllability of the process. Steady-state and dynamic simulation models were developed to predict the process behavior during typical transients that occur in plant operation. Advanced control strategies were developed to improve the ability of the process to follow changes in the power load demand, and to improve performance during transitions between power levels. Another objective of the proposed work was to educate graduate and undergraduate students in the application of process systems and control to coal technology. Educational materials were developed for use in engineering courses to further broaden this exposure to many students. ASPENTECH software was used to perform steady-state and dynamic simulations of an IGCC power plant. Linear systems analysis techniques were used to assess the steady-state and dynamic operability of the power plant under various plant operating conditions. Model predictive control (MPC) strategies were developed to improve the dynamic operation of the power plants. MATLAB and SIMULINK software were used for systems analysis and control system design, and the SIMULINK functionality in ASPEN DYNAMICS was used to test the control strategies onmore » the simulated process. Project funds were used to support a Ph.D. student to receive education and training in coal technology and the application of modeling and simulation techniques.« less
Authors:
;
Publication Date:
OSTI Identifier:
1026486
DOE Contract Number:
FG26-07NT43071
Resource Type:
Technical Report
Research Org:
Rensselaer Polytechnic Institute
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
01 COAL, LIGNITE, AND PEAT; 20 FOSSIL-FUELED POWER PLANTS; ASPENS; COAL; COMBINED CYCLES; COMBINED-CYCLE POWER PLANTS; CONTROL SYSTEMS; DESIGN; EDUCATION; GASIFICATION; PERFORMANCE; POWER PLANTS; SIMULATION; SYSTEMS ANALYSIS; TRAINING; TRANSIENTS