skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Simulating adsorption of U(VI) under transient groundwater flow and hydrochemistry – Physical versus non-equilibrium model

Journal Article · · Water Resources Research, 47:Article No. W08501
DOI:https://doi.org/10.1029/2010WR010118· OSTI ID:1023104

Coupled intra-grain diffusional mass-transfer and non-linear surface complexation processes play an important role for the transport behaviour of U(VI) in contaminated aquifers. Two alternative model approaches for simulating these coupled processes have been analysed and compared: (i) the physical non-equilibrium approach that explicitly accounts for aqueous speciation and instantaneous surface complexation reactions in the intra-grain regions and approximates the diffusive mass exchange between the immobile intra-grain pore water and the advective pore water as multi-rate 1st-order mass transfer and (ii) the chemical non-equilibrium approach that approximates the diffusion-limited intra-grain surface complexation reactions by a set of multiple 1st-order surface complexation reaction kinetics, thereby eliminating the explicit treatment of aqueous speciation in the intra grain pore water. Model comparison has been carried out for column and field scale scenarios, representing the highly transient hydrological and geochemical conditions in the U(VI)-contaminated aquifer at the Hanford 300A site, Washington, USA. It was found that the response of apparent U(VI) adsorption/desorption kinetic behaviour to hydrogeochemically induced changes in U(VI) sorption strength is more pronounced in the physical than in the chemical non-equilibrium model. The magnitude of the differences in model behaviour depends particularly on the degree of disequilibrium between the advective and immobile phase U(VI) concentrations. While a clear difference in U(VI) transport behaviour between the two models was noticeable for the column-scale scenarios, only minor differences were found for the Hanford 300A field scale scenarios, where the model-generated disequilibrium conditions were less pronounced as a result of high frequent groundwater flow reversals.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1023104
Report Number(s):
PNNL-SA-76544; WRERAQ; KP1702030; TRN: US1104453
Journal Information:
Water Resources Research, 47:Article No. W08501, Vol. 47; ISSN 0043-1397
Country of Publication:
United States
Language:
English