skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Improved simulations of heat transfer in liquid metal flows.

Journal Article · · Nucl. Technol.
OSTI ID:1020662
 [1]
  1. Nuclear Engineering Division

In liquid-metal flows, the predictions of the Nusselt number (heat transfer) by Reynolds-averaged Navier-Stokes models of turbulence that use the assumption of a constant turbulent Prandtl number can be significantly off. Heat transfer analyses were performed with a number of turbulence models for flows in a triangular rod bundle and in a pipe, and model predictions were compared with experimental data. Emphasis was placed on the low Reynolds (low-Re) number k-{var_epsilon} model that resolves the boundary layer and does not use 'logarithmic wall functions.' The high Reynolds (high-Re) number k-{var_epsilon} model underpredicts the Nusselt number up to 30%, while the low-Re number model overpredicts it up to 34%. For high Peclet number values, the low-Re number model provides better predictions than the high-Re number model. For Peclet numbers higher than 1500, the predictions of the Reynolds stress model (RSM) are in very good agreement with experimental measurements, but for lower Peclet number values its predictions are significantly off. A relationship was developed that expresses the turbulent Prandtl number as a function of the ratio of the turbulent viscosity to the molecular viscosity. With this modified turbulent Prandtl number, for the flow in the rod bundle the predictions of the low-Re number model are well within the spread of the experimental measurements. For pipe flow, the model predictions are not as sensitive to the correction of the turbulent Prandtl number as they are in the case of the flow in a bundle. The modified low-Re number model underpredicts the limited experimental data by 4%.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
DE-AC02-06CH11357
OSTI ID:
1020662
Report Number(s):
ANL/NE/JA-68276; TRN: US1103756
Journal Information:
Nucl. Technol., Vol. 174, Issue 1 ; Apr. 2011
Country of Publication:
United States
Language:
ENGLISH

Similar Records

Local friction and heat transfer behavior of water in a turbulent pipe flow with a large heat flux at the wall
Journal Article · Mon May 01 00:00:00 EDT 1995 · Journal of Heat Transfer · OSTI ID:1020662

Numerical Study of Vortex Core in Turbulent Swirling Flow
Journal Article · Fri Jul 01 00:00:00 EDT 2016 · Transactions of the American Nuclear Society · OSTI ID:1020662

Convective heat transfer in a high aspect ratio minichannel heated on one side
Journal Article · Wed Oct 21 00:00:00 EDT 2015 · Journal of Heat Transfer · OSTI ID:1020662