skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: AC Loss Measurements on a 2G YBCO Coil

Conference ·
OSTI ID:1016045

The Oak Ridge National Laboratory (ORNL) is collaborating with Waukesha Electric Systems (WES) to continue development of HTS power transformers. For compatibility with the existing power grid, a commercially viable HTS transformer will have to operate at high voltages in the range of 138 kV and above, and will have to withstand 550-kV impulse voltages as well. Second-generation (2G) YBCO coated conductors will be required for an economically-competitive design. In order to adequately size the refrigeration system for these transformers, the ac loss of these HTS coils must be characterized. Electrical AC loss measurements were conducted on a prototype high voltage (HV) coil with co-wound stainless steel at 60 Hz in a liquid nitrogen bath using a lock-in amplifier technique. The prototype HV coil consisted of 26 continuous (without splice) single pancake coils concentrically centered on a stainless steel former. For ac loss measurement purposes, voltage tap pairs were soldered across each set of two single pancake coils so that a total of 13 separate voltage measurements could be made across the entire length of the coil. AC loss measurements were taken as a function of ac excitation current. Results show that the loss is primarily concentrated at the ends of the coil where the operating fraction of critical current is the highest and show a distinct difference in current scaling of the losses between low current and high current regimes.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
OE USDOE - Office of Electric Transmission and Distribution
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
1016045
Resource Relation:
Conference: Applied Superconductivity Conference, Washington, DC, DC, USA, 20100802, 20100806
Country of Publication:
United States
Language:
English