skip to main content

Title: An integrative modeling framework to evaluate the productivity and sustainability of biofuel crop production systems

The potential expansion of biofuel production raises food, energy, and environmental challenges that require careful assessment of the impact of biofuel production on greenhouse gas (GHG) emissions, soil erosion, nutrient loading, and water quality. In this study, we describe a spatially explicit integrative modeling framework (SEIMF) to understand and quantify the environmental impacts of different biomass cropping systems. This SEIMF consists of three major components: (1) a geographic information system (GIS)-based data analysis system to define spatial modeling units with resolution of 56 m to address spatial variability, (2) the biophysical and biogeochemical model Environmental Policy Integrated Climate (EPIC) applied in a spatially-explicit way to predict biomass yield, GHG emissions, and other environmental impacts of different biofuel crops production systems, and (3) an evolutionary multiobjective optimization algorithm for exploring the trade-offs between biofuel energy production and unintended ecosystem-service responses. Simple examples illustrate the major functions of the SEIMF when applied to a nine-county Regional Intensive Modeling Area (RIMA) in SW Michigan to (1) simulate biofuel crop production, (2) compare impacts of management practices and local ecosystem settings, and (3) optimize the spatial configuration of different biofuel production systems by balancing energy production and other ecosystem-service variables. Potential applications of themore » SEIMF to support life cycle analysis and provide information on biodiversity evaluation and marginal-land identification are also discussed. The SEIMF developed in this study is expected to provide a useful tool for scientists and decision makers to understand sustainability issues associated with the production of biofuels at local, regional, and national scales.« less
 [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [2] ;  [2] ;  [2] ;  [3]
  1. University of Maryland
  2. ORNL
  3. AgriLIFE, Temple, TX
Publication Date:
OSTI Identifier:
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Global Change Biology; Journal Volume: 2; Journal Issue: 5
Research Org:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Oak Ridge National Environmental Research Park
Sponsoring Org:
Country of Publication:
United States
bioenergy; biomass feedstock; environmental sustainability; geographic information system; greenhouse gases; multiobjective optimization; soil erosion