skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Hydrogen Storage Properties of Rigid Three-Dimensional Hofmann Clathrate Derivatives: The Effects of Pore Size

Journal Article · · Journal of Physical Chemistry. C
DOI:https://doi.org/10.1021/jp710996y· OSTI ID:1015111

The effects of pore size on the hydrogen storage properties of a series of pillared layered solids based on the M(L)[M'(CN)(4)] structural motif, where M = Co or Ni, L = pyrazine (pyz), 4,4'-bipyridine (bpy), or 4,4'-dipyridylacetylene (dpac), and M' = Ni, Pd, or Pt, has been investigated. The compounds all possess slitlike pores with constant in-plane dimensions and similar organic functionality. The pore heights vary as a function of L and provide a means for a systematic investigation of the effects of pore dimension on hydrogen storage properties in porous materials. Hydrogen isotherms were measured at 77 and 87 K up to a pressure of 1 atm. The pyz pillared materials with the smallest pore dimensions store hydrogen at a pore density similar to that of liquid hydrogen. The adsorbed hydrogen density drops by a factor of 2 as the relative pore size is tripled in the dpac material. The decreased storage efficiency diminishes the expected gravimetric gain in capacity for the larger pore materials. The heats of adsorption were found to range from 6 to 8 kJ/mol in the series and weakly correlate with pore size.

Research Organization:
National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV, and Albany, OR (United States)
Sponsoring Organization:
USDOE Assistant Secretary for Fossil Energy (FE)
OSTI ID:
1015111
Report Number(s):
NETL-TPR-1860
Journal Information:
Journal of Physical Chemistry. C, Vol. 112, Issue 17; ISSN 1932-7447: jpccck
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English