skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Scanning tunneling microscope design with a confocal small field permanent magnet.

Journal Article · · Meas. Sci. Technol.

The field of ultra-sensitive measurements with scanning probes requires the design and construction of novel instruments. For example, the combination of radio frequency detection and scanning probe can be exploited to measure thermal properties and mechanical resonances at a very low scale. Very recent results by Komeda and Manassen (2008 Appl. Phys. Lett. 92 212506) on the detection of spin noise with the scanning tunneling microscopy (STM) have further expanded previous results reported by one of the authors of this manuscript (Messina et al 2007 J. Appl. Phys. 101 053916). In a previous publication, one of the authors used a new STM instrument (Messina et al J. Appl. Phys. 2007 101 053916 and Mannini et al 2007 Inorg. Chim. Acta 360 3837-42) to obtain the detection of electron spin noise (ESN) from individual paramagnetic adsorbates. The magnetic field homogeneity at the STM tip-sample region was limited. Furthermore, vacuum operation of the STM microscope was limited by the heat dissipation at the electromagnet and the radio frequency (RF) recovery electronics. We report here on a new STM head that incorporates a specially designed permanent magnet and in-built RF amplification system. The magnet provides both a better field homogeneity and freedom to operate the instrument in vacuum. The STM microscope is vacuum compatible, and vertical stability has been improved over the previous design (Messina et al 2007 J. Appl. Phys. 101 053916), despite the presence of a heat dissipative RF amplifier in the close vicinity of the STM tip.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
DE-AC02-06CH11357
OSTI ID:
1014836
Report Number(s):
ANL/MSD/JA-68867; TRN: US201113%%39
Journal Information:
Meas. Sci. Technol., Vol. 19, Issue Sep. 2008
Country of Publication:
United States
Language:
ENGLISH