skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Microdistributions of Rb and Sr in ALH84001 carbonates: Chronological implications for secondary alteration on Mars

Conference ·
OSTI ID:1008872

Concentrations of Rb and Sr were analyzed on the micron-scale in various compositional zones of the ALH84001 carbonates. Implications of the measured Rb/Sr ratios for the chronology of these carbonates are discussed. ALH84001 is unique among the Martian meteorites in that it has an ancient crystallization age of {approx}4.5 Ga defined by Sm-Nd isotope systematics. Another aspect that differentiates this Martian meteorite from the others is the presence of Ca-Fe-Mg carbonates (modal abundance {approx}1%) that are thought to have been precipitated during alteration in a near-surface environment. Precise age dating of these carbonates is important since it could provide constraints on the timing of surficial secondary alteration processes on Mars. However, this has been a challenging problem owing to the relatively small abundance of the carbonates in ALH84001 and because these carbonates are difficult to separate from the other minerals in the rock by physical and chemical means. Previous investigations have attempted to separate the carbonates by leaching of carbonate-rich mineral fractions. The single 'bulk carbonate' fraction analyzed by Wadhwa and Lugmair was characterized by a low {sup 87}Rb/{sup 86}Sr ratio of {approx}0.05, the lowest of any mineral in ALH84001, and the corresponding Rb-Sr age estimate ({approx}1.39 Ga) was dependent on the assumption of isotopic equilibrium between the carbonates and plagioclase. As pointed out by Borg et al., such an assumption may not be assured and, therefore, they obtained multiple carbonate-rich leachates with a range of {sup 87}Rb/{sup 86}Sr ratios (0.12-2.62) from which they estimated an age of {approx}3.9 Ga. Although these authors performed painstaking chemical characterization to determine contributions in the leachates from minerals such as phosphates and silicates, it is nevertheless difficult to positively rule out contributions from other as yet unidentified phases. Therefore, the goal of the present investigation was to characterize the distributions of Rb and Sr abundances in ALH84001 carbonates on the micrometer-scale.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Organization:
USDOE
OSTI ID:
1008872
Resource Relation:
Conference: 33rd Lunar and Planetary Science Conference;March 11-15, 2002;League City, TX
Country of Publication:
United States
Language:
ENGLISH