skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Soluble semiconductors AAsSe{sub 2} (A = Li, Na) with a direct-band-gap and strong second harmonic generation : a combined experimental and theoretical study.

Journal Article · · J. Am. Chem. Soc.
DOI:https://doi.org/10.1021/ja9094846· OSTI ID:1008298

AAsSe{sub 2} (A = Li, Na) have been identified as a new class of polar direct-band gap semiconductors. These I-V-VI{sub 2} ternary alkali-metal chalcoarsenates have infinite single chains of (1/{infinity})[AsQ{sub 2}{sup -}] derived from corner-sharing pyramidal AsQ{sup 3} units with stereochemically active lone pairs of electrons on arsenic. The conformations and packing of the chains depend on the structure-directing alkali metals. This results in at least four different structural types for the Li1-xNaxAsSe{sub 2} stoichoimetry ({alpha}-LiAsSe{sub 2}, {beta}-LiAsSe{sub 2}, {gamma}-NaAsSe{sub 2}, and {delta}-NaAsSe{sub 2}). Single-crystal X-ray diffraction studies showed an average cubic NaCl-type structure for {alpha}-LiAsSe{sub 2}, which was further demonstrated to be locally distorted by pair distribution function (PDF) analysis. The {beta} and {gamma} forms have polar structures built of different (1/{infinity})[AsSe{sub 2}{sup -}] chain conformations, whereas the {delta} form has nonpolar packing. A wide range of direct band gaps are observed, depending on composition: namely, 1.11 eV for {alpha}-LiAsSe{sub 2}, 1.60 eV for LiAsS{sub 2}, 1.75 eV for {gamma}-NaAsSe{sub 2}, 2.23 eV for NaAsS{sub 2}. The AAsQ{sub 2} materials are soluble in common solvents such as methanol, which makes them promising candidates for solution processing. Band structure calculations performed with the highly precise screened-exchange sX-LDA FLAPW method confirm the direct-gap nature and agree well with experiment. The polar {gamma}-NaAsSe{sub 2} shows very large nonlinear optical (NLO) second harmonic generation (SHG) response in the wavelength range of 600-950 nm. The theoretical studies confirm the experimental results and show that {gamma}-NaAsSe{sub 2} has the highest static SHG coefficient known to date, 337.9 pm/V, among materials with band gaps larger than 1.0 eV.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Organization:
USDOE Office of Science (SC); National Science Foundation (NSF)
DOE Contract Number:
DE-AC02-06CH11357
OSTI ID:
1008298
Report Number(s):
ANL/MSD/JA-69074; TRN: US201106%%386
Journal Information:
J. Am. Chem. Soc., Vol. 132, Issue Feb. 19, 2010
Country of Publication:
United States
Language:
ENGLISH