skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mineralogy and characterization of arsenic, iron, and lead in a mine waste-derived fertilizer

Journal Article · · Environ. Sci. Technol.
DOI:https://doi.org/10.1021/es060853c· OSTI ID:1007727

The solid-state speciation of arsenic (As), iron (Fe), and lead (Pb) was studied in the mine waste-derived fertilizer Ironite using X-ray absorption spectroscopy, Moessbauer spectroscopy, and aging studies. Arsenic was primarily associated with ferrihydrite (60-70%), with the remainder found in arsenopyrite (30-40%). Lead was observed almost exclusively as anglesite (PbSO{sub 4}), with <1% observed as galena (PbS). The identification of As in oxidized Fe oxides and Pb as PbSO{sub 4} is in disagreement with the dominant reduced phases previously reported and suggests As and Pb contained within the mine waste-derived product are more bioavailable than previously considered. Aging studies in solution result in Ironite granules separating into two distinct fractions, an orange oxide precipitate and a crystalline fraction with a metallic luster. The orange oxide fraction contained As adsorbed/precipitated with ferrihydrite that is released into solution when allowed to equilibrate with water. The fraction with a metallic luster contained pyrite and arsenopyrite. A complete breakdown of arsenopyrite was observed in Ironite aged for 1 month in buffered deionized water. The observations from this study indicate As and Pb exist as oxidized phases that likely develop from the beneficiation and processing of mine tailings for commercial sale. The potential release of As and Pb has important implications for water quality standards and human health. Of particular concern is the quantity of As released from mine waste-derived products due to the new As regulation applied in 2006, limiting As levels to 10 {micro}g L{sup -1} in drinking water.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Organization:
USDOE
OSTI ID:
1007727
Journal Information:
Environ. Sci. Technol., Vol. 40, Issue (16) ; 07, 2006; ISSN 0013-936X
Country of Publication:
United States
Language:
ENGLISH