skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Oxidation Resistance: One Barrier to Moving Beyond Ni-Base Superalloys

Journal Article · · Materials Science and Engineering A

The implementation of new high-temperature materials is often hampered by their lack of oxidation or environmental resistance. This failing is one of the strongest barriers to moving beyond Ni-base superalloys for many commercial applications. In practice, usable high-temperature alloys have at least reasonable oxidation resistance, but the current generation of single-crystal Ni-base superalloys has sufficient oxidation resistance that optimized versions can be used without a metallic bond coating and only an oxygen-transparent ceramic coating for thermal protection. The material development process often centers around mechanical properties, while oxidation resistance, along with other realities, is given minor attention. For many applications, the assumption that an oxidation-resistant coating can be used to protect a substrate is seriously flawed, as coatings often do not provide sufficient reliability for critical components. Examples of oxidation problems are given for currently used materials and materials classes with critical oxidation resistance problems.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
FE USDOE - Office of Fossil Energy (FE)
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
1003171
Journal Information:
Materials Science and Engineering A, Vol. 415, Issue 1-2; ISSN 0921-5093
Country of Publication:
United States
Language:
English