skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Low temperature amorphization and superconductivity in FeSe single crystals at high pressures

Journal Article · · J. Mater. Res.

In this study, we report low temperature x-ray diffraction studies combined with electrical resistance measurements on single crystals of iron-based layered superconductor FeSe to a temperature of 10 K and a pressure of 44 GPa. The low temperature high pressure x-ray diffraction studies were performed using a synchrotron source and superconductivity at high pressure was studied using designer diamond anvils. At ambient temperature, the FeSe sample shows a phase transformation from a PbO-type tetragonal phase to a NiAs-type hexagonal phase at 10 {+-} 2 GPa. On cooling, a structural distortion from a PbO-type tetragonal phase to an orthorhombic Cmma phase is observed below 100 K. At a low temperature of 10 K, compression of the orthorhombic Cmma phase results in a gradual transformation to an amorphous phase above 15 GPa. The transformation to the amorphous phase is completed by 40 GPa at 10 K. A loss of superconductivity is observed in the amorphous phase and a dramatic change in the temperature behavior of electrical resistance indicates formation of a semiconducting state at high pressures and low temperatures. The formation of the amorphous phase is attributed to a kinetic hindrance to the growth of a hexagonal NiAs phase under high pressures and low temperatures.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Organization:
USDOE
OSTI ID:
1002547
Journal Information:
J. Mater. Res., Vol. 25, Issue (2) ; 02, 2010; ISSN 0884-2914
Country of Publication:
United States
Language:
ENGLISH