skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Acid Gas Capture Using CO2-Binding Organic Liquids

Conference ·
OSTI ID:1002187

Current chemical CO2 scrubbing technology is primarily aqueous alkanolamine based. These systems rapidly bind CO2 (forming water-soluble carbamate and bicarbonate salts) however, the process has serious disadvantages. The concentration of monoethanolamine rarely exceeds 30 wt % due to the corrosive nature of the solution, and this reduces the maximum CO2 volumetric (≤108 g/L) and gravimetric capacity (≤7 wt%) of the CO2 scrubber. The ≤30 wt % loading of ethanolamine also means that a large excess of water must be pumped and heated during CO2 capture and release, and this greatly increases the energy requirements especially considering the high specific heat of water (4 j/g-1K-1). Our approach is to switch to organic systems that chemically bind CO2 as liquid alkylcarbonate salts. Our CO2-binding organic liquids have higher CO2 solubility, lower specific heats, potential for less corrosion and lower binding energies for CO2 than aqueous systems. CO2BOLs also reversibly bind and release mixed sulfur oxides. Furthermore the CO2BOL system can be direct solvent replacements for any solvent based CO2 capture systems because they are commercially available reagents and because they are fluids they would not require extensive process re-engineering.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1002187
Report Number(s):
PNNL-SA-65561; TRN: US201102%%538
Resource Relation:
Conference: Proceedings of the 2010 Annual Meeting of the AIChE, November 7-12, 2010, Salt Lake City, Utah, Paper No. 334d
Country of Publication:
United States
Language:
English