skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Heats of Formation of XeF₃⁺, XeF₃⁻, XeF₅⁺, XeF₇⁺, XeF₇⁻,and XeF₈ from High Level Electronic Structure Calculations

Journal Article · · Inorganic Chemistry, 49(1):261-270
DOI:https://doi.org/10.1021/ic901956g· OSTI ID:1001469

Atomization energies at 0 K and heats of formation at 0 and 298 K are predicted for XeF₃⁺, XeF₃⁻, XeF₅⁺, XeF₇⁻, and XeF₈ from coupled cluster theory (CCSD(T)) calculations with effective core potential correlation-consistent basis sets for Xe and including correlation of the nearest core electrons. Additional corrections are included to achieve near chemical accuracy of ±1 kcal/mol. Vibrational zero point energies were computed at the MP2 level of theory. Unlike the other neutral xenon fluorides, XeF₈ is predicted to be thermodynamically unstable with respect to loss of F₂ with the reaction calculated to be exothermic by 22.3 kcal/mol at 0 K. XeF₇⁺ is also predicted to be thermodynamically unstable with respect to the loss of F₂ by 24.1 kcal/mol at 0 K. For XeF₃⁺, XeF₅⁺, XeF₃⁻, XeF₅⁻ and XeF₇⁻, the reactions for loss of F₂ are endothermic by 14.8, 37.8, 38.2, 59.6, and 31.9 kcal/mol at 0 K, respectively. The F⁻ affinities of Xe, XeF₂, XeF₄, and XeF₆ are predicted to be 165.1, 155.3, 172.7, and 132.5 kcal/mol, and the corresponding F⁻ affinities are 6.3, 19.9, 59.1, and 75.0 kcal/mol at 0 K, respectively.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1001469
Journal Information:
Inorganic Chemistry, 49(1):261-270, Vol. 49, Issue 1; ISSN 0020-1669
Country of Publication:
United States
Language:
English