skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mathematical modeling of hydrolysate diffusion and utilization in cellulolytic biofilms of the extreme thermophile Caldicellulosiruptor obsidiansis

Journal Article · · Bioresource technology

Abstract: The morphological and structural properties of microbial biofilms are influenced by internal substrate diffusion and utilization processes. In the case of microbial hydrolysis of plant cell walls, only thin and uniform biofilm structures are typically formed by cellulolytic microorganisms. In this study, we develop a hydrolysate diffusion and utilization model system to examine factors influencing cellulolytic biofilm formation. Model simulations using Caldicellulosiruptor obsidiansis as a representative organism, reveal that the growth of the cellulolytic biofilm is limited by hydrolysate utilization but not diffusion. As a consequence, the cellulolytic biofilm has a uniform growth rate, and there is a hydrolysate surplus that diffuses through the cellulolytic biofilm into the bulk solution where it is consumed by planktonic cells. Predictions based on the model were tested in a cellulose fermentation study and the results are consistent with the model and previously reported experimental data. The factors determining the rate-limiting step of biofilm growth are also analyzed.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
1001289
Journal Information:
Bioresource technology, Vol. 102, Issue 3; ISSN 0960-8524
Country of Publication:
United States
Language:
English