Precision Alignment Using a System of Large

Rectangular Fresnel Lenses

W. B. Herrmannsfeldt, M. J. Lee, J. J. Spranza, and K. R. Trigger

A system of large rectangular Fresnel lenses has been used in the laser alignment system for the SLAC
two-mile accelerator. The alignment system consists of a He—Ne laser light source, a photoelectric de-
tector, and the lenses, one of which is located at each of 297 points which are to be aligned. Eachlenshas
the proper focal length % focus the laser to a point image at the detector. When the alignment at a cer-
tain point is to be checked, the image from that lens is scanned by the detector. The image is found to be
displaced from its normal position by an amount equal to the product of the position error and the magni-
fication of the lens. The alignment sensitivity is #=0.0025 mm. The targets are enclosed in a 60-cm
diam evacuated light pipe to avoid atmospheric disturbances.

Introduction

Accurate optical alighment over very long lengths
requires high resolution optics and the elimination of
atmospheric disturbance.. A system of 297 large,
long focal length, rectangular Fresnel lenses is used for
the alignment of the Stanford two-mile linear accelera-
tor. The lenses are enclosed in a 60-cm diam vacuum
pipe. The system consists of alight source, a detector,
and the lenses, one of which is located at each point
which isto be aligned.

The tolerance for the alignment of the target points
along the accelerator: is ==0.25 mm. = Conventional
optical tooling techniques would require that a very
large. telescope be pointed at a reference target at the
end of the accelerator. The telescope would then have
to remain stable until a target at the point to be aligned
could be inserted and viewed. The stability require-
ment would be 0.25 mm/3.0 X 10°® mm or less than
10-"rad, a virtually impossible tolerance.

The three point method which has been adopted
eliminates the high pointing accuracy requirement.
Instead, a diverging monochromatic light source is used
to lluminate fully the target whose position is to be
determined. The target, which functions as a simple
converging lens, focuses the light source to an image
at the opposite end from the source.

The basic idea of the SLAC alignment system is
illustrated in Fig. 1. A straight line is defined between
a point source of light L and a detector D. The
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‘muthal tolerance is about 1 min of arc.

light source is a . helium-—neon laser. The detector
consists of a mechanical scanning system and a photo-
multiplier with suitable output equipment capable
of resolving a shift of 0.025 mm at any of the 274 sup-
port points. The actual sensitivity or least count of
the detector is one-tenth of that, or +0.0025 mm. At
each support point, a target 7 is supported on a re-
motely actuated hinge. Three additional targets are
mounted on monuments, such as the one at M, which
are 60-cm diam pillars supported by rock below the
accelerator foundation. To check the alignment at a
desired point, the target at that point is inserted into
the light beam by actuating the hinge mechanism.
The target is actually a rectangular Fresnel lens with the
correct focal length so that an image of the light source
is formed on the plane of the detector. This image is
then scanned by the detector in both the vertical and
horizontal directions in order to determine the dis-
placement of the target from the predetermined line.

The targets are mounted in a 60-cm diam aluminum
pipe (see Fig. 2) which is the basic support girder for the
accelerator. The support girder is evacuated to about
0.01 torr to prevent air refraction effects from distorting
or deflecting the alignment image. If any adjustmerits
are required; the support girder is moved by means
of a pair of vertical screw jacks and a side wall screw
jack. o

The accelerator proper is mounted about 68 ecm
above the center of the support girder. Because the
optical alignment system is only intended to align the
support girder in the horizontal and vertical directions,
it is necessary to provide an auxiliary system of levels
to prevent azimuthal misalighment of .the support
girder which, to first order, would have the effect of
horizontal misalignment of the acecelerator. The azi-
Figure 3 is a
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Fig. 1. Schematic illustration of the SLAC alignment system.

A typical target T, which is actually a rectangular Fresnel lens,

focuses the laser light source L to an image at the detector D.

There are 294 alignment targets and three monument targets

such as at M, which are attached to deep pillars. V is the 60-cm
diam vacuum pipe, 12 m long.

ACCELERATOR

SUPPORT GIRDER
60cm DIAMETER
ADJUSTABLE PIPE 12 meters LONG
SUPPORTS

INTERCONNECTING
PIN

RETRACTABLE
TARGET

Tig. 2. The mounting arrangement at the target end of each

accelerator support girder. The target is shown in the inserted

position. When retracted, the target is positioned horizontally
along the top of the pipe.

photograph of an installed accelerator segment before
the next preceding segment was moved in place.

Over-all Description of the Alignment System

The accelerator is assembled from prefabricated
segments which are approximately 12 m long. The
standard accelerator segment consists of four 3-m long
sections of disk-loaded waveguide mounted on top of a
12-m long section of the 60-cm diam aluminum support
girder. At the end of each sector, which consists of
eight 12-m long segments, there is a special 3-m long
drift section used for steering, focusing, and instrumen-
tation. The standard drift section consists of focusing
and steering magnets, beam monitoring devices, and a
16-mm diam collimator mounted on a 3-m long segment
of support pipe. There is a total of thirty such sectors,
i.e., 240 of the 12-m segments and thirty of the 3-m
drift sections, plus three extra segments for the injector
and the positron source. As described above, each seg-
ment is supported at the input end by a pair of precision
screw jacks from the floor and by a third jack from the
wall, as shown in Fig. 2. The output end of a segment
is attached to the beginning of the next segment by a
pair of heavy guide pins which allow for thermal ex-
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pansion. Both the support girders themselves and
the four 3-m long accelerator sections supported on each
of them are joined end-to-end by heliarc-welded bellows.
A 7.5:cm thick aluminum end flange is welded to the
input end of each segment of support pipe. The con-
necting pins from the three jacks are fastened to the
outside of this flange. The target hinge assembly is
mounted on the top of the inside surface of the flange.
The accelerator sections are supported on adjustable
brackets along the support pipe, except that the first
support bracket for the section which begins above the
flange is pinned in place. The whole design at the
input flange is intended to provide the maximum rigid-
ity for the support between the accelerator sections and
the alignment target.

The alignment target is mounted on a 40-cm square
stainless steel frame. The hinged target support plate
is spring-loaded to hold the target firmly against the
lower stop when it is inserted in the light beam. A
spring-loaded actuator holds the target horizontally
against the top of the support girder when it is not being
used. In this position the target is hidden behind a
square baffle which is mounted in the output end of the
adjacent segment of the support girder. One target
at a time is to be inserted in the light beam produced by
the laser. The target is inserted by operating the
bellows actuator which is mounted in an opening on
the top of the support girder. The control panel for
the target actuator is in the klystron gallery located
on the surface directly above the accelerator. Indicator

R RACTABLE
RESNEL
ARGET

Fig. 3. Photograph of an installed accelerator segment taken
prior to installation of the next segment. Adjacent segments are
joined by a welded bellows.



Fig. 4. A one-dimensional Fresnel pattern. The spacing is the
same as for a circular Fresnel lens with the same product of focal
length and wavelength.

lights wired to microswitches within the support girder
show the position of the target to the operator in the
klystron gallery. In addition, the operator of the
detection equipment at the end of the accelerator has
an indicator showing if any target in the entire system
is not fully retracted. This indicator assures the
operator that only one target at a time is affecting
the pattern. The operator also has control switches
to permit him to insert remotely one target at each
drift section in order to make a quick survey of the
key points along the accelerator.

Light Source

The light source for the alignment system is a
standard model of a commercial helium-neon gas
laser. The targets are degigned for the fundamental
visible wavelength of 6328 A. A short focal length lens
is mounted on the laser to cause the beam to diverge
sufficiently to illuminate fully the closest target which
is about 15 m away. This target has a diagonal dimen-
sion of about 15 cm, but to insure that the target is
evenly illuminated and to reduce further the pointing
requirement, the beam is diverged to about twice that
diameter. Even with the diverging lens, the intensity
of the images as viewed on a ground glass screen is
sufficient to be viewed in subdued light. The laser
output is from 1.0 mW to 3.0 mW.

Lens Design and Fabrication

The targets are rectangular Fresnel zone plates.
The rectangular design is preferred over the classical
circular zone plate primarily for reasons of fabrication.
It is easier to rule straight lines than circles, and the
circular zones would require special spiders for supports.
The basic scheme would of course also work with glass
lenses. The overwhelming objection to glass is that

ordinary glass turns dark in high radiation fields such
as are found along the linear accelerator. Also the
costs for glass lenses, particularly of radiation resistant
material, could be expected to be much greater.

The one-dimensional Fresnel pattern is shown in Fig. |
4. The distance from the centerline of the target to
the nth slot is

Xo = (rs/2D¥4n)i, 1)

This is the same expression that is derived for the radius
of the 2n Fresnel zone in most standard optics texts.!
In it, X\ is the wavelength, r and s are, respectively, the
distances from the target to the laser and to the detec-
tor,andl = r + s. The edges of the nth slot are at

Xai = Ows/203dn + d — 1)}
and (2)
Xno = (ws/20)3dn + d + 1)

The subscripts 7 and o denote the inner and outer edges
of a slot, respectively. The arbitrary constant d selects
the point at which the slot edge will be located in each
Fresnel zone. For example, the values 0.0 and 2.0 for
d have the effect of making two patterns which are the
inverse or negatives of each other.

The targets are formed by chemically milling the
array of rectangular holes into a copper sheet which is
about 35 em square and 0.5 mm thick. The following
step-by-step manufacturing process is used:

1) Rule the complete one-dimensional pattern on a
coated glass plate with an automatic diamond-tipped
ruling engine controlled by punched paper tape, gener-
ated from computer magnetic tape output.

2) Strip the coating from the area between the edges
of the open slots to form the pattern shown in Fig. 4.

3) By a succession of photographic steps, all using

Fig. 5. The crossed pattern of the rectangular Fresnel lens. The
actual lenses have open spaces in the dark areas. The opaque
center ribbon, 1 ¢cm in width, provides added structural support.

June 1968 / Vol. 7, No. 6 / APPLIED OPTICS 997



AR e — AN o AN

Fig. 6. A cross section of a target showing how the apertures

are formed by the 0.05-mm thick nickel plating on 0.5-mm thick

copper sheets. When the holes are small and closely spaced, all
the copper may be removed.

contact printing, form a master pattern consisting of
crossed images of the one-dimensional pattern as
shown in Fig. 5.

4) Transfer the master pattern to the copper sheet
by applying a light-sensitive coating known as photo-
resist and by exposing the coated copper to the master
pattern. The nature of the photoresist coating is such
that, after developing and fixing, it is possible to use a
suitable solvent to wash away the coating where the
copper has not been exposed. The resulting areas of
clean copper may then be used for subsequent plating
or etching operations.

5) Electroplate an 0.05-mm thick layer of nickel
on the clean copper to form the actual pattern of the
target.

6) By chemical milling, remove the unplated copper
to form the required pattern of holes as in Fig. 5.
The chemical milling process is controlled to retain the
copper behind the nickel plating wherever possible.
Generally, some copper will remain if the width of the
ribbon is greater than the thickness of the copper sheet.

7) Apply a thin flash-coating of nickel for protection
to the target which now resembles the cross-section
view shown in Fig, 6.

8) Mount the target to the stainless steel frame by
match drilling the target and the frame. The frame
has a pair of holes which fit over locating pins on the
target hinge, thus completing the connection from the
target to the accelerator.

Errors in the position of the edges of the apertures can
always be divided into symmetric and asymmetric
errors. The maximum error that can oceur in finding
the center of the target is essentially the magnitude of
the asymmetric shift of the aperture edges. This con-
clusion was verified by caleulations based on methods
which will be used later in this paper. The calculations
are detailed in an internal document.? The tolerance
for the aperture edges is 0.025 mm which is the same
as the criteria for the sensitivity of alignment of each
target.

Symmetric errors can only affect the intensity and
sharpness of the image, never its position. The only
important type of symmetric error is that which is
proportional to the distance of the edge of the aperture
from the center of the target. This error is equivalent
to having the wrong focal length for the target as
calculated from Eq. (2), where the focal length f is given
by f = rs/l. The longitudinal distance by which each
target can be moved without causing a reduction in
alignment sensitivity greater than 109, has been calcu-
lated by a digital computer program. In many cases
it was found possible to let one target pattern be used in
two or more positions without exceeding the 109,
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limitation. In addition, it is frequently possible to
use the same target at an exactly symmetrically located
position relative to the center of the accelerator. This
is equivalent to exchanging » and s in Eq. (2). As a
result, a total of only 121 different patterns is required
for the 277 target locations along the accelerator.

Most of the patterns are 30 cm square. However, a
limit of 250 slots was set and, as a result, at the ends of
the accelerator the targets have 250 lines in less than
30 cm. The smallest of the targets, which is the very
last one, is only about 10 em square. The smallest
slot in this last target is about 0.1 mm wide. The
target with the longest focal length, which is located at
the center of the accelerator, has only forty-six slots
in each direction of the 30-cm square.

Detector

The spot or line width of the image at the detection
station varies from about 0.1 mm for the last target
to about 10.0 mm for the target nearest the light source.
Figure 7 shows a photograph of a typical image pattern.
The point to be aligned is the spot at the intersection of
the crossed lines. The most difficult targets to align
are the ones in the center of the accelerator. In this
region, line widths are about 4.0 mm. The desired
resolution of the alignment system is 0.025 mm.
With a 2-to-1 enlargement ratio of a lens in the center
of the accelerator, it is necessary to find the center of the
spot to within 0.05 mm, or one part in eighty of the
line width. This is better than a human operator could
be expected to do routinely. Therefore an electro-

mechanical scanning system has been devised which
generates the derivative of the spot intensity as a func-
tion of detector position in the horizontal or vertical
The center of the spot is defined by the
The advantage of

directions.
point where the derivative is zero.

Fig. 7. Photograph of image pattern from a Fresnel lens. The

point to be aligned is the spot at the center of the crossed lines.

The width of the center spot corresponds to the diffraction limit
of the Fresnel lens.
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Fig. 8. Plot of the differentiated signal from the photoelectric
scanner. The trace was repeated to show the reproducibility of
the output.
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Fig. 9. The variable amplitude scanner and photomultiplier.
The scanner may be rotated to sweep either vertically or hori-
zontally.

using this method is that the steep line intersecting
the axis gives an unambiguous determination of the
image center. Figure 8 shows the actual plot of the
differentiated alignment image as obtained from an
z—y recorder. The curve was traced twice to establish
the reproducibility of the results. Figure 9 shows an
artist’s cutaway of the detector assembly. The detec-
tor can be rotated so that it can scan either horizontally
or vertically. A switching mirror system at the detector
permits the operator to view the image on a ground
glass or to direct it into the detector.

Referring to Fig. 8, the slope of the trace as it crosses
the horizontal axis is proportional to the second deriva-
tive of the intensity at the peak of the image spot,
(d2I/dx?). When the second derivative of the in-
tensity curve is multiplied by the peak intensity I.,
we obtain a measure of the error signal as a function of
displacement of the image. When the square root of
this quantity is multiplied by the magnification of the
system I/r, resulting product is proportional to the
signal obtained by displacing the target, thus giving as a
measure of the alignment sensitivity

d/dx (output signal) a(l/r)[To(d2 /dy*)] ¥y = o 3)

Image Pattern

The calculation of the image intensity from a pattern
of holes in a target plate involves the use of Fresnel
integrals. Both Taylor series approximations of the
integrals and digital computer programs have been
used for calculating the expected images. The ana-
lytical approximation for the rectangular Fresnel lens
is presented below.

The intensity of light which has passed through an
arbitrary hole pattern at any point P on the image plane
is

I(P) = |U(P)= (4)

For a point source S, the amplitude U(P) is given by
the Fresnel-Kirchhoff diffraction integral which, to
second order in the variables ¢ and » describing the
surface, is

— Aeikt
uwp) = 2 f exp[(Er/2)(p? + »?)]ldudy,  (5)
target

where p and » are the normalized distances from the ‘
origin P on the target and are given by

u? = (20/\rs)g? and »? = (21/Nrs)n’ (6)

The wavenumber is k& = 2x/\ and, as in Fig. 10, »
and s are the target and image distances, respectively,
and [ = 7+ s. The point O(P) is the point where the
line joining S and P intersects the plane of the target.
The source intensity is 4 2 units of power.

By taking coordinates £ and » parallel to the edges of
the holes, we can separate the integrals in Eq. (5)
and write

ikl

UP) = — 2; fexp[i(r/2)u2]du f expli(r/2)dv.  (7)
u v
By substituting Eq. (7) back into Eq. (4), we have

I(P) = (A/20)? {C?[u(P)] + S[u(P)]} (3)
X {C»(P)] + S [»(P)} = (4/20)ul,.

There are a variety of ways to design the target within
the mechanical limitations. A simple illustration is to
attempt to maximize the C integrals while minimizing

P(X,y)

ot
ofP)
2

DETECTOR

soyree ]
S
/

A\

AN\
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£

Fig. 10. The coordinate system for calculating the Fresnel
integrals. The amplitude U(P) at the detector is found by in-
tegrating from the point O(P) on the target.

June 1968 / Vol. 7, No. 6 / APPLIED OPTICS 999



the Sintegralsfor P = 0. If we write

c(0) = fcos<gyz)dualld3(0)=fsin<§,ﬂ>d,,, )

and allow slots at 4n — 1 < u2 < 4n + 1 and ribbons
at dn + 1 < p? < 4n + 3, the cos(n/2) u? function
will always be positive during intervals of contribution
to the integral while the sin(x/2)u? function will oscillate
in a manner that causes the integral to be small.
The nth slot will then have edges at

£y = Ows/20¥dn + Pand £_ = Ows/2)}dn — 1)1 (10)

In the case of the targets for the main part of the
accelerator, a support strip was required through the
middle of each target. This prevented us from includ-
ing the center or n = O slot. The best alternative was
to make the central ribbon the same width (1 ¢cm) in all
targets. Under this circumstance the slot edges as
defined by Eq. (10) do not give optimum peak intensity.
It is shown in the Appendix that the peak intensity can
be maximized by the addition of the constant d under
the radical as in Eq. (2), with the value of d determined
for each target by the central ribbon width. Since
M/2 is different for each target, it is necessary to cal-
culate d from the expression in Eq. (2) for the inner
edge of the first slot X;-2 = (\f/2)(3 + d), yielding

d = [0.25/(\f/2)] — 3. (11)

For this example we will continue to consider the case
ford = 0, but without the center slot.

Having defined the target pattern as alternating slots
and ribbons, we can rewrite the integrals as sums of
integrals over the successive slots. Thus we can write

N #n +(€) -
Cle) = Z f cos(§t2>dt (12)

n= —N un —(€)
n#% 0

N Bn +(€) T
S(e) = Z f sin<§t2>dt, (13)

n= =N Jun-(&
n#0 "

and

where ¢ is the normalized displacement from P at the
point where the line from L to the point of interest on
the image plane crosses the target. Thus for the in-
tensity at the peak, the integrals are evaluated for e
= 0. By measuring ¢ in the normalized coordinates,
as in Eq. (6), the slot edges, which are the limits of
integration, become

un-(e) = (dn — 1)} — eand paile) = @dn + 1)i—e,
forn >0
and (14)
mn-(e) = (4n| + 1)} — ¢ and payle)
= —n] — 1)} — ¢ forn < 0.

To analyze the intensity of the image near the central
maximum we express the one-dimensional intensity of
Eq. (8) asapowerseriesine. Thus we have

1000 APPLIED OPTICS / Vol.7, No. 6 / June 1968

Iu(e) = C%(0) + 8%(0) + €[2C(dC/De) + 28(d8/0¢)] o
+ (2/2)[2(3C/0¢)? + 2C(d%C/e?)
+ 2(08/0¢€)? + 25(0%8/0€®)] emot+ ..., (15)
where

oC T T

= = - 2: T 2) — T 2

Q¢ n |:COS<2;1,,+ ) 008(2%_ >:|’
¢

. ™ . T
Py = -7 ;[an+ sin (Eﬂn+2> — Mn-SID <§I-¢n -2> :',
28
a = — Zl:sin (gﬂn+2> — sin (;—r,un._z> :I, and
n

0

= TLo2) _ T
2e = Zn:[yH COS(Z;J,;,,. ) M — cos<2/.c,._ .

For the range of boundaries of interest, good approxi-
mations for the integrals are?

” T, ~_1_ 1 [ cos[(r/2)u?] T
j; cos<§t )dt =95 7""[-—7”42 sm<2;ﬂ>] (16)
and
()} o

(7o) o b _ L [sinl/2)

j; sm<2t2>dt =3 W'u[ o cos

Using Eq. (16), we have

cor -3 [ (" 2>dt+ o ("tz>d
= — 5 ¢

0) 21:\[:,,,_ cos| ; . cos{ 5

1 N 7 cos(mr/2)u? sin(m-/2)#2:| (dnt 1)}
o {; [2 Tud + 4 —
DMr cos[(x/2)u] Sin[("/2)u2]:| _(4“”_1)%}
+ —Zl [2 7r/.43 + “ _(4‘m+1)%
2 2 1 N 9 N
= — Z [(dn +1)"2 4+ (4n — 1)77%] = = Z n=1t (18)

Similarly, we can show that

2 X 3 y
80) =~ — = 31 (én + )7 + (dn ~ 1)7%]
1

N
~ = n—3%, (19)
27 5

Except for small values of N, the contribution of S%(0)
t0 I,(0) is negligible. The sum for C(0) can be approxi-
mated by

N 1 N-+1 N+1 X
En"% =~ -[f n'*dn-i-f (n — 1)“7dnJ—|—1
1 2 2 2

= (N 4+ 1)} + Nt — 28 (20)
Thus we have
Cx0) = @/=)[(N + 1)} + Nt — 2}, (21)

which agrees with computer caleulations of 7(0) within
0.259%, for N > 25.

In completing the expansion to second order for Eq.
(15), we find, using the above method,



b_C
23

= 2

o8| _ o%8
T de

ety

= 0. (22)

The only nonzero term for second order is

0:C

e

N N
—2r 3 [@n+ 1P+ (n — D} ~ -8z 3 nt
1 1

N+1 N+1
~ —47r[f nidn +f (n — 1)%dn] (23)
1 1

- %’W(N + 1)% + N% — 1]

I

Substituting Egs. (21), (22), and (23) into Eq. (15)
we have

Iu(e) =~ 4/x)[(N + 1)} + N — 2¥]2

Xl:l_ yAmt (V + 1% 4 N¥% — 1
8 (W + 1)+ NF— 2t

+ ] (24)

For an alignment target formed by superimposing
identical patterns at right angles to each other, we can
use

I1,(0) = I,(0). (25)
Then, from Eq. (8), with N >> 1, we have
I(e) = (A/1)2(64N2/74)[1 — &2(47x2N/3) + ...], (26)

which describes the intensity near the peak along one of
the axis lines through the center.

Detector Signals

The methods used to analyze the image intensity
from the rectangular Fresnel lens will now be extended
to study the signal from the detector. The image is
scanned in one direction at a time by a linearly oscillat-
ing aperture which moves parallel to the direction in
which the scanning motion is made. A phase-sensitive
detector is used to analyze the signal. To get an
analytical conception of the signal amplitude, slope,
and line width, we expand the image in a Taylor series.

If H(x,y) describes an aperture located at « and y
on the image plane, the power into a photomultiplier
tube placed behind the aperture is

Pzy) = 1—1)2 I(&) (n)dtdn. 27)
2/ J a@a

As defined in Eq. (6), £ and n are measured in the target
plane. I(£) and I(x) can be expanded in a Taylor series
as

I(g) = I(0) + &I™ + (g2/2I® 4. .., (28)

where I® = ("I /0£");-o. Itisconvenient to calculate
using a rectangular aperture with dimensions 2a¢ wide
by 2b high. Then the integral in Eq. (27) becomes

r\z [z+ta y+b
f I(&) (n)dedn = <2> f I(s)dsf I(q)dn, (29)
H(z,y) r—a y—b

where the r/l factors come from measuring ¢ and 5 at
the image plane.

If the scan is made in the z direction right through
the peak of the image at y = 0, we have

b
’—; f I(n)dy = 20 (0% + 33’1<2>b3 + ... =G0 (30)
__b :

and
gfxﬂ I(8)dg = 2I1(0)a + 1/2[(x + a)? — (x — a)*[I®
e
+ 1/3!(x + a) — (x — a)*|I®
4+ 1/4!( + a)* — (x — a)] [®
+ 1/5!(z + a)® — (z — a)* 1™ + ...
= 2I(0)a + 2zal® + [az® + (a3/3)][I®
+ (za/3)(x? + a®)I® + 2a/5!(5x*
+ 10z2a? + a*) + ...
= F(z). (31)
The motion of the aperture is described by

z = 2y + d sinwt, (32)

where z, is the position of the center of oscillation at
time ¢ and the amplitude of oscillation is d. From
Eq. (32) we have )

z? = z9? + 2z0d sinwt + d? sin?wl,
23 = 2% + 3202d sinwt + 3xed? sin%wt + d3 sindwi, and
2t = xot + 4xp’d sinwt + 6z2d? sinZwt + 42,d? sindwt
+ d* sinfwt.  (33)
The output signal can be obtained in terms of the

primary oscillating frequency and harmonics by using
the following standard trigonometric identities:

sin?wt = } — % cos2uwt,
sindwt = % sinwt — % sin3wi,

sindwt = ¢ — % cos2wt 4+ § cosdwt. (34)

The Fourier analysis can then be made by combining
Egs. (31) through (34) and grouping terms with the
same harmonic number. When this is done, the terms
with the fundamental frequency are

U/r)Fi(m) = 21Wad + 21 Padzy + IPalx?d + (a2d/3)
+ (d3/4)] + M @alxd + imd® + matd] + .... (35)

To evaluate Eq. (35) we use the result that [by com-
paring Eqs. (21) and (24) ]

N I‘n+(€) T 2
I.(e) = Z f cos(—ﬂ)dt = C%(e). (36)
N s —(e) 2

n=—

n#=0
From the definition in Eq. (6) we have, from Eq. (28),
(r/DI™ = (2r/\s)*/2(d%,/0em), (37)
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where the derivatives are found by successive differenti-
ation of Eq. (36).

The derivatives of the C'(e) integrals follow the pat-
tern used after Eq. (15). If we use the same model
target that was assumed in the analysis of the rectangu-
lar Fresnel lens, the limits of integration are the same
as given by Eq. (14).

Predictably, we find that the odd derivatives are

(dC/de)|e=0 = D3C/2e3 = 0. (38)

For the even derivatives C(0) and 02C/de%.—o are
given by Eqs. (21) and (23), respectively. Continuing
to the fourth derivative from Eq. (15), we obtain,

C /o6t = (3273/5)[(N + 1)%¢ + N?¢ — 1]. (39)

Combining Egs. (35) through (39), we find the coeffi-
cient of the fundamental frequency is

Fi(zy) = —(2r/Ns)(2adz,)(128N2/3)
[1 — (2r/Ns)(@e® -+ 3/s d? + a2)(16+2N/15) + ...]. (40)

The width of the image can be defined as the distance
between maximum and minimum of Fy(zs). As such,
it is approximately the distance between the positive
and negative peaks in Fig. 8 and is about equal to the
full width at half maximum. If we assume a« and d
are small compared to the distance to the maximum or
minimum 2, we have 1 — (167%/5) Nan? (2r/Ns) =
0, by setting [dF1(zo)/dz,] = 0. TFrom this we find
Tm = £ [(1672/5)N(2r/Ns)] ~2. 41)
Thus the line width, 2.
(Nr/s)~ 4.
In practice the light pipe is a constant diameter, thus
limiting the targets to a fixed maximum width. If we

let p? = 4N in Eq. (6), £ would equal the half width of a
target so that the effective width of a target is

D = (8Nars/l)}. 42)

Combining Eqs. (41) and (42), the width of the image
is found to be

— Zminy IS proportional to

w =~ (5)}(\s/xD), (43)

which, in the middle of the accelerator, is 4.5 mm.
Equation (43) is strikingly close to the standard ex-
pression for resolution of a lens, \s/D.

The detection sensitivity is equal to the derivative of
the first harmonic coefficient at z, = 0. Combining
Eqgs. (27) and (30) and differentiating, we have (dP:/
dzg)ze=0 = (4/20)% G(0)(dF1/dxo)|s, =0, which, when we
substitute from Egs. (30) and (40) is

(AP /dty) 20 = — (A /21)[(16N /x2)2b] (2r/Ns)[(256N?/3)ad].
(44)

If we let the dimensions of the aperture be proportional
to the image width such that b = 2a = fw, where f is a
constant of proportionality, Eq. (44) reduces to

(AP /dxp) zym0 = —17(4 /20)2N2f2d. (45)
With a laser source that emits 1 mW into a solid angle
of 4 X 10~*sr, (A/20)2 = 2 X 10122 W/em? for I =
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3 X 10° em. If we assume the sweep amplitude d of
the scanner is equal to w/2, we find |dPy/dz| ~ 1.7
X 10~ N2 W/em.

In the center of the accelerator the targets only have
46 lines, or N = 23. If we let f = 1/10, 'dPy/dx| ~ 4
X 107 W/em. However, since the image from the
center target moves twice as far as the target, the align-
ment sensitivity is

[dPy/dg| = (1/r)|dP,/dz], (46)

which for the center target is about 8 X 101! W/cm.
To detect a shift of 0.025 mm in the target requires a
differentiation of

[dPy/dg|ag = (8 X 10-11) X (0.25 X 10-3)W, (47)

or 2 X 10~'* W for the middle target. The peak inten-
sity, which is the energy striking the photomultiplier
at the center of the image, is, from Egs. (26) and (30),

10) = (A/21)2(256N2/=4)(2b)(2a) A
= (A/21) (512N2/x%)fw? W. (48)

At the center of the accelerator this is about 8.5 X
1012 W.

Baffles

A baffle plate with a square opening has been mounted
in the light pipe at each target position. The dimen-
sions of the hole in each baffle are determined by the
criteria that no light may get around a lens when it is
inserted and that no direct rays from the laser may hit
the inside surface of the pipe.

The combined diffraction pattern from all the baffles
is very complex. It is actually such a diffraction pat-
tern, not a spherical wave, which illuminates a lens.
The alignment errors resulting from the baffles were
calculated in Ref. 2. The method used was to estimate
the alignment error as a function of the asymmetry of
the diffraction pattern from the baffles. The conclu-
sion is that for any reasonable shift of the baffle, the
resulting alignment error is negligible.

Vacuum Requirements

The 60-cm light pipe must be partially evacuated to
reduce refractive effects of the residual gas to below the
alignment tolerance. Some care was taken during
construction to avoid the introduction of heavy solvents
or other chemicals with high indices of refraction, so
that dry air will be assumed for the following calcula-
tions. A large oil diffusion pump with a refrigerated
baffle is located at one end of the pipe which has a
volume of nearly 10° liters. The pumping system
has proven capable of reducing the pressure to ~10—2
torr overnight. At this pressure the system becomes
conduction limited.

To calculate the effects of the residual gas we assume
that the index of refraction has the form

n(y) = no(l — ey), (49)

where n(y) is the index of refraction as a function of the
vertical position y, and nge is the gradient of n in the



vertical direction. The vector form of the differential
equation of a light ray is*

(d/ds)[n(dr/ds)] = gradn (50)

where z is the distance along the ray and r = iz + jy,
where i and j are unit vectors. If we measure z along
the axis of the light pipe, then s = 2z to a very good ap-

proximation. Substituting Eq. (49) on the right side of
Eq. (50) we have
(@/dz)n[i + j(dy/dz)] = —jeno, (61)
so that
(d/dz)[n(dy/dx)]) =~ — eno. (52)

If eis small, by integrating Eq. (52) we find

y =~ —(ex?/2) + Cx + C". (53)

If we study a ray which starts on the axis and parallel to
it, both constants of integration are zero and we find

y = —(ez?/2), (54)

which gives the displacement of a light ray due to a gra-
dient of the index of refraction in the light pipe. For the
accelerator, the worst case is the middle target so that z is
about 1500 m. For an error of 0.025 mm, which is the
usual tolerance, we find a value of ¢ = 2 X 10-1%/cm.
To determine the gradient of the index of refraction
we start with the Lorentz-Lorenz formula in the form?

A = (BT/p)(n* — 1)/3, (55)

in which A is the molar refractivity, R is the gas con-
stant, T is temperature, and P is pressure. Becausen is
very nearly unity we can rewrite Eq. (55) as

n— 1= [34p/RT(n + 1)] = (34/2R)(p/T) (56)

to obtain the temperature and pressure dependence of
n — 1. For dry air at standard temperature and pres-
sure we haven — 1 = 3 X 10~% Thus, at any other
temperature T and pressure p, we have
n— 1 =38 X 10~4(300°K /760 torr)(p/T)
= 1.2 X 10~4(p/T), (57)
where p and T'are measured in torrs and °K, respectively.
To calculate the gradient of the index of refraction due

to vertical temperature and pressure gradients we first
let

p =m0+ py (58)
and
T="Ty+ T, (69)

where p’ and T’ are the derivatives of pressure and tem-
perature with respect to the coordinate y.
By substituting Egs. (58) and (59) into Eq. (57) and
expanding to terms of first order in y, we have
n — 1= 1.2 X 10~%[(p/To) + (p'y/Ts)
— (@T'y/Te*) + ...1. (60)

By comparing terms in Eq. (60) with Eq. (49) we have

e = 1.2 X 10~4[(peT"/To?) — (p'/Ts)]. (61)

At10—2torr,p’ = —1.1 X 10—%torr/em. The pressure
term then becomes ¢, = 4 X 10~%/em which is 1/50th
of the tolerance we derived above and is negligible.
The temperature gradient from top to bottom of the
light pipe is not well known. Differences of about
0.1°C have been measured. If we solve Eq. (61) for 7",
using the calculated tolerance for nye we have

 meelet 2 X 1071 X 300
T 12X 1074P, 1.2 X 10~* X 10~

!

~0.015°C/cm, (62)

which means that about 1°C differential is allowed from
top to bottom of the 60-cm diam light pipe. It is no-
table that the temperature term is the term that limits
the maximum pressure that we can permit and still
stay within the tolerance for alignment.

Operating Results

The theoretical predictions of image size and detector
sensitivity have largely been confirmed by experiment.
The dimensions of the image patterns agree with the
predictions of Eq. (43) except in the case of the targets
nearest the laser. TFor the target closest to the laser it
appears that the assumption of a point source is invalid.
The image from that target is about 2 em in diameter in-
stead of the 1 em calculated assuming a point light
source. The magnification for this position is about
200 to 1 meaning that the center only needs to be found
to within 5.0 mm to yield the required accuracy of
locating the target. Actually, the sensitivity of deter-
mining the position of any target with the photoelectric
scanner is =0.0025 mm, which is the least count of the
shaft encoder on the traverse system. The optimum
aperture dimensions and scanning amplitudes which
were calculated are only partially adhered to in practice.
The scanning amplitude is adjusted according to the
image width. However, all operation is with a round
aperture of 0.1-mm diam. The photomultiplier has
a sufficiently sensitive cathode that even this small aper-
ture is enough to give a very adequate signal.

Information about long term stability is obtained by
referring to four monuments which are located along the
accelerator. Three of the monuments have targets just
like the accelerator targets but independent of the ac-
celerator. The fourth monument is used as the base
for the detector. Alignment data taken at any time can
be calculated with reference to the straight line deter-
mined by any two points along the accelerator. When-
ever a pair uf the monuments is chosen for this purpose,
the results give the total shift since the initial alignment.

For the period of operation since April 1966, an align-
ment check showed some areas had settled by up to 2.5
mm. The results of this survey are shown in Figs. 11
and 12. The largest settlements occurred in areas con-
structed over filled ground. The correspondence with
settlement and fill is quite striking. The implication is
that those parts of the accelerator which were built
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Fig. 11. Horizontal shift from April 1966 to January 1967. The

abscissa scale is measured from the west end of the accelerator.
The displacements shown are cumulative totals.
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Fig. 12. Vertical shift from April 1966 to January 1967. Nor-
mally the accelerator is realigned before the required adjustment
can exceed 1 mm.

directly on subsurface rock would be quite stable.
Fortunately the more critical areas of the beam switch-
yvard and the end stations are all built directly on the
underlying sandstone.

The proximity of the San Andreas fault is often re-
ferred to. The fault lies about a kilometer to the west
of the accelerator and runs normal to the accelerator.
It is too early to tell what effect the presence of the fault
may have on the accelerator. There were several very
light earth temblors in Northern California in the past
few months. No one in the accelerator housing has re-
ported feeling them, however, and beam operation has
not been effected. We have not been able to ascribe
any motion to the seismic phenomena.

We wish to express our appreciation to SLAC’s di-
rector, W. K. H. Panofsky. His active participation in
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developing the concepts of the Fresnel lens system was
vital to the success of the program.
The work was supported by the U.S.AEC.

Appendix

For a target pattern having alternate slots and rib-
bons, the integrals in Eq. (9) can be written as sums of
integrals over the slots. We consider two-dimensional

vectors
Va = [C4(0),8.(0)]
with
Hn + T
C.(0) = f cos(Etz) dt
Hn -
and

8.(0) = f”“ sin(gﬁ>dt.
bn -
In terms of these vectors the peak intensity is given by
I(0) = (4/21)*1,1,, where

2

I, = |V|2 =

=V,
n

and a similar expression for /,. Thus, in order to opti-
mize the peak intensity, we must require that the length
of the vector V be maximized.

A procedure for maximizing |V| will be illustrated
graphically. On a plot of the Cornu spiral we start
from a point p;—, which corresponds to a given central
ribbon width of a target, and draw a straight line
through the end point of the spiral F as in Fig. 13. The
points of intersection of the line with the spiral consti-
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Fig. 13. Cornu spiral used to show graphic method of deter-

mining the optimum target design. The point w;- corresponds

to the edge of the central ribbon. Subsequent slot edges corre-

spond to the intersections of successive spirals with the line joining
E and MH1—.



tute a set of un+ and u,— which maximizes [V]. It can
be seen that each of the vectors V, has an optimum
length and all vectors lie along the same direction.

It will be shown analytically that the values of wu+
and u,— are approximately given by p,+ = (4n — d +
1)}withd = 3 — u%—, where m—2 = lw?/2\rs in which
w is the width of the central ribbon.

It suffices to show that the slopes of the lines joining
pn+ and E are independent on n.

From Eqs. (16) and (17), we find for the slopes of the
lines joining p,+ and E

{sin[(w/2)utne] /rutar} — cos[(x/2)utnse]
{eos[(n/2)utnt] /mutane} — sin[(r/2)utnec] ’

Ma(d) =

from which
sin[(w/2)(d %= 1) — o]
cos[(7/2)(d = 1) + &)’

My(d) =

where ¢ = tan~! 7u2,.. Since d < 3, mulsx > 12 for
n = 2, 50 that ¢ =~ x/2. Hence,

M 3.(d) = sin(xd/2)/cos(xd/2),

which being independent of n, proves that the choice of
edges is optimized.
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reported by FRANK COOKE, 66 Summer Street, North Brookfield, Mass.
Mr. Cooke welcomes news and comments for this column which should be sent to him at the above address %

This month this column reflects another activity in the
German optical industry; see the February issue this year
for the first part of the feature on Optics in Germany.

Breithaupt Digigon Digital Theodolite

The progress of automatic control in many fields of engineering
requires the application of new measuring methods to geodesy.
In cooperation with the Geodetic Institute of the Bonn Uni-
versity, F. W. Breithaupt und Sohn developed a digital theodolite
that registers the angle values automatically by means of a bi-
directional counter (Fig. 1). These angle values are supplied in
proper form for subsequent automatic treatment without re-
computation. The observer can, at any time, check his measure-
ments, the results of which are shown as clearly visible numbers
on the counter.

Dr. Ing. Zetsche suggested incorporating photoelectronic
angle transducers in a theodolite in order to eliminate, by the
automatic recording of angle values, reading errors and mistakes
m manual entries. The Leitz photoelectronic angle transducer in-
corporated in the Breithaupt digital theodolite is provided with a
radial grid disk with 5000 divisions. The rotary motion of the
disk, which is connected to the alidade, is transformed into peri-
odic light fluctuations. In order to eliminate remaining ec-
centricity errors, a portion of the radial grid is electrically il-
luminated, and a same-size image of the grid division is formed
on the diametrically opposite part of the grid. Owing to the
fact that the image forming rays are deflected by an even number
of reflecting surfaces, this image moves in the opposite direction
to the movement of the radial grid disk. The contrarotation of

Fig. 1. The Breithaupt digital theodolite with photoelectronic

read-out of the circle and bidirectional counter.

grid division and grid image doubles the number of the light pe-
riods compared with that of the division periods. Thus 10,000
periods are formed per rotation which are transformed into two
series of dephased electric signals by means of photodiodes. Each

June 1968 / Vol.7, No.6 / APPLIED OPTICS 1005



