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A B S T R A C T

Deposits enriched in rare earth elements (REEs) are abundant and diverse in mineralogy, but those of current 
economic value have extremely limited geographic distribution. Due to rapidly increasing demand and concerns 
about supply chain security, new and improved methods of prospecting, beneficiation, separation, purification, 
and recycling are needed. By overviewing the types and geographic distribution of REE deposits globally, their 
petrogenesis and major mineralogic assemblages, this review aims to deepen understanding of different types of 
REE deposits and distribution characteristics at the global level. Our review also seeks to provide a concise 
summary of important background information that is accessible to researchers from a variety of disciplines who 
are seeking to engage this rapidly expanding field.

1. Introduction

According to the International Union of Pure and Applied Chemistry
(IUPAC), rare earth elements (REEs) constitute a group of seventeen 
elements, including scandium (Sc), yttrium (Y), and the lanthanide se
ries (fifteen elements from Lanthanum (La) to Lutetium (Lu)) (Damhus 
et al., 2005). Generally speaking, REEs can be divided into two group of 
light REEs [LREEs, including La, cerium (Ce), praseodymium (Pr), 
neodymium (Nd), promethium (Pm), samarium (Sm), and europium 
(Eu)] and heavy REEs [HREEs, including gadolinium (Gd), terbium (Tb), 
dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium 
(Yb), Lu, Sc, and Y]. REEs find extensive use in various consumer 
products due to their indispensability in electronic, optical, magnetic, 
aerospace, biomedicines, energy storage, quantum information sciences, 
and catalytic applications (Atwood, 2013; Binnemans et al., 2013; Zhou 
et al., 2017; Goodenough et al., 2018; Balaram, 2019). Additionally, 
they play a crucial role in energy efficiency improvement, environ
mental protection, and the advancement of digital technology. The 
current surge in demand for REEs is undeniable. However, it’s crucial to 
note that global production is, in fact, keeping pace with this rising 
demand, as indicated by the relatively stable REE prices (Filho et al., 
2023; Liu et al., 2023). What significantly influences the REE landscape 
are political initiatives aimed at mitigating reliance on China as a pri
mary source of critical raw materials (Hu et al., 2023a). This shift is 
evident in the recent policy developments in countries like the USA, 

Canada, and the EU (Kalantzakos, 2020; Theodosopoulos, 2020; Lew
icka et al., 2021; Oh et al., 2021; Bide et al., 2022). These geopolitical 
decisions play a more pivotal role than any inherent production-demand 
imbalance. For example, In June 2021, the White House released a 
one-hundred-day review report, utilizing the terms "strategic and critical 
materials" as substitutes for critical minerals. Among these materials, 
rare earths received the most attention in the report (White, 2021). This 
report has had a profound impact on the future of the rare earth industry 
and policies in the United States (Folkedahl et al., 2023; Vivoda, 2023). 
The geopolitical competition over controlling rare earth resources un
derscores the importance of REEs and the necessity for strategic man
agement and conservation. (Geng et al., 2023).

Fig. 1 illustrates the known global occurrence of REEs mineralization 
(Orris and Grauch, 2002). The distribution of global REE reserves is 
highly concentrated in several countries, including China, Vietnam, 
Brazil, Russia, India, Australia, the United States, Greenland, Tanzania, 
Canada, and South Africa (Zhou et al., 2017; Balaram, 2019). Currently, 
the major processed/refined pure REE producers in terms of quantity are 
China, the United States, Australia, and Myanmar (U.S. Geological 
Survey, 2023). Over the past decade, China alone has accounted for 
around 70%–90% of global production and has been the leading pro
ducer of REEs since the 1980s (Mancheri, 2012; Liang et al., 2014; Patil 
et al., 2022). In order to preserve its REE resources to meet domestic 
demands and address environmental concerns, China has implemented 
various measures such as quotas, licenses, and taxes to restrict REEs 
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Fig. 1. Known REEs mines and deposits globally. Deposits in black color are modified after (Deady, 2021); deposits in red color are from (Pham-Ngoc et al., 2016; 
Spandler et al., 2020; Liu et al., 2023).



of REE resources (Jha et al., 2016; Meshram and Pandey, 2019). 
Monazite and bastnäsite serve as the primary sources of the LREEs, 
predominantly containing Ce, La, and Nd. But some monazite exhibits a 
slightly distinct composition with lower amounts of La and higher levels 
of Nd and HREEs. It is worth noting that monazite also contains the 
radioactive elements thorium (Th) and uranium (U) (Andreoli et al., 
1994; Hussain et al., 2020; Su et al., 2021; Dostal and Gerel, 2023). On 
the other hand, xenotime is characterized by the HREEs (such as Y, Dy, 
Er, Yb, and Ho) (Harben, 2002).

3. Major REE ore deposit types

REE ore deposits can generally be categorized into two main types:
primary deposits formed through hydrothermal and igneous processes 

Fig. 2. Comparison of the abundance of various elements in the Earth’s crust (Yaroshevsky, 2006).

Table 1 
List of common REE-bearing mineral phases and their molecular formulas, and 
typical values of their rare earth oxide (REO) contents.

minerals Formula Approximate REO 
%

Aeschynite-(Ce) (Ce,Ca,Fe,Th) (Ti,Nb)2(O,OH)6 32
Allanite-(Ce) (Ce,Ca,Y)2 (AI,Fe3+)3(SiO4)3OH 38
Apatite (Ca,Ce)5(PO4)3(F,CI,OH) 19
Bastnäsite-(Ce) (Ce,La) (CO3)F 75
Brannerite (U,Ca,Y,Ce) (Ti,Fe)2O6 9
Britholite-(Ce) (Ce,Ca)5(SiO4,PO3)3(OH,F) 32
Eudialyte Na4(Ca,Ce)2(Fe2+,Mn,Y)ZrSi8O22(OH, 

CI)2 (?)
9

Euxenite-(Y) (Y,Ca,Ce,U,Th) (Nb,Ta,Ti)2O6 24
Fergusonite- 

(Ce)
(Ce,La,Nd)NbO4 53

Gadolinite-(Ce) (Ce,La,Nd,Y)2Fe2+Be2Si2O10 60
Kainosite-(Y) Ca2(Y,Ce)2Si4O12CO3⋅H2O 38
Loparite (Ce,La,Na,Ca,Sr) (Ti,Nb)O3 30
Monazite-(Ce) (Ce,La,Nd,Th)PO4 65
Parisite-(Ce) Ca(Ce,La)2(CO3)3F2 61
Xenotime YPO4 61
Yttrocerite (Ca,Ce,Y,La)F3.nH2O 53
Huanghoite- 

(Ce)
BaCe(CO3)2F. 39

Cebaite-(Ce) Ba3Ce2(CO3)5F2 32
Florencite-(Ce) CeAl3(PO4)2(OH)6 32
Synchysite-(Ce) Ca(Ce,La) (CO3)2F 51
Samarskite-(Y) (Y,Ce,U,Fe3+)3(Nb,Ta,Ti)5O16 24
Knopite (Ca,Ti,Ce2)O3 NA

Note: Data from reference (Walter et al., 2010). NA means not available.

production after 2010 (Hayes-Labruto et al., 2013; Wübbeke, 2013; Han 
et al., 2015; Lei et al., 2017; Hu et al., 2023b). Consequently, many 
countries have started exploring new REE deposits and expanding do-
mestic rare earth production. Additionally, efforts to recycle, conserve 
REEs, and explore substitute materials have intensified in various 
countries (Lei et al., 2017; Van Gosen et al., 2017; Ciacci et al., 2019; 
Humphries, 2019; Mancheri et al., 2019).

The current geopolitical imbalance in REE production versus de-
mand is driving new research and development for more efficient or 
novel methods of REE extraction, beneficiation, and separation/refining 
for mineralized deposits. This review seeks to help facilitate this effort 
by providing an overview of REE resource types, and their geographic 
distribution. We first summarize the chemical characteristics of some 
important REE-bearing minerals, also the classification of REE deposits. 
Next, we examine the worldwide distribution of REE resources, high-
lighting well-known REE deposits with significant current and/or future 
production potential. Finally, we conclude with some observations and 
considerations for future development in this general area of research.

2. Classification of REE minerals and their crystal chemical 
compositions

The total abundance of REEs in Earth’s crust is approximately 169.1 
ppm, including ~137.8 ppm of light REEs and ~31.3 ppm of heavy REEs 
(Rudnick and Gao, 2003). Among them, the most abundant REEs are Ce 
(~63 ppm), La (~31 ppm), Nd (~27 ppm), and Y (~21 ppm), which 
have average crustal abundances similar to some industrial metals, such 
as chromium (~100 ppm), nickel (~84 ppm), copper (~60 ppm), zinc 
(~70 ppm), cobalt (~25 ppm), lithium (20 ppm), and lead (~14 ppm) 
(Fig. 2) (Dushyantha et al., 2020). Therefore, despite the label "rare" in 
their name, they are not as scarce as the term implies. The word "rare" 
primarily indicates that even in enriched deposits REEs tend not to occur 
in compositionally pure mineral phases but rather as solid solution in 
relatively low concentrations, often as substituents for major ions in 
various compatible crystal structure types (Haxel et al., 2002).

REEs are found in a wide variety of mineral phases such as carbon-
ates, halides, phosphates, and oxides (Möller, 1986; Jordens et al., 2013; 
Dushyantha et al., 2020). Currently, over 250 minerals have been 
identified as containing REEs, however, only a few minerals are 
commercially significant or have the potential to become so (Table 1) 
(Jordens et al., 2013). Among these minerals, bastnäsite, xenotime, and 
monazite are the three main kinds that are associated with the majority 



• Carbonatite-related deposits
• Deposits associated with alkaline igneous rocks
• Magmatic-hydrothermal deposits
• Residual weathering deposits
• Placers
• Offshore sedimentary deposits
• REEs in coals

Carbonatite-related deposits. According to the International Union
of Geological Sciences, carbonatites are defined as igneous rocks con
sisting of over 50% by volume of primary carbonate mineral 
(Streckeisen, 1980). They commonly occur in stable regions of the crust, 
such as cratons, and often form carbonatite-alkaline complexes because 
they are associated with alkaline silicate igneous rocks, or isolated in 
various forms including stocks, sills, dikes, irregular-shaped masses 
(Walter et al., 2010; Linnen et al., 2013; Wang et al., 2020). Carbonatites 
vary in composition from calcic, dolomitic, to ferro-carbonate (sub
divided into ankerite [Ca(Mg,Fe2+,Mn) (CO3)2] or siderite [FeCO3]) 
(Schulz et al., 2017; Simandl and Paradis, 2018; Pirajno and Yu, 2022). 
There is currently considerable controversy regarding the formation of 
carbonatites. Some believe that carbonatites derive from silica-poor but 
carbon dioxide-rich magmas originating from the upper mantle, or from 
carbonate-bearing alkaline silicate magmas through immiscibility or 
fractionation (Rankin and Le Bas, 1974; Hamilton et al., 1979; Twyman 
and Gittins, 1987; Wallace and Green, 1988; Kjarsgaard and Hamilton, 
1989; Baker and Wyllie, 1990; Harmer and Gittins, 1998; Wyllie and 
Lee, 1998; Veksler et al., 2006). Others argue that carbonatite magmas 
can directly originate from low-degree partial melting of carbonated 
mantle peridotite (Gittins, 1988; Woolley and Kjarsgaard, 2008) or 
partial melting of subducted oceanic crust (Walter et al., 2008). How
ever, Anenburg et al. propose that regardless of the origin of carbonates, 
in order to enrich rare earth elements in carbonatite sources, especially 
for the largest economic deposits, one or more crucial processes must 
accompany the evolution of carbonatites. These include three main 
stages: igneous fractionation (>600 ◦C), brine-melt stage (600-400 ◦C), 
and hydrothermal fluid. While REE mineralization primarily occurs in 
the latter two stages, igneous fractionation plays a crucial role in the 
crystallization of REE-poor minerals in carbonatite melts, leading to the 
enrichment of rare earth elements in the residual melt (Anenburg et al., 
2021). This intricate evolution process can also be inferred from flu
id/melt inclusions in carbonatites, where the diversity of components 
mirrors processes such as fractionation, fluid exsolution, and subsequent 
fluid phase separation (immiscibility) (Walter et al., 2021).

Carbonatite-related REE deposits, such as Mountain Pass, USA, have 
been the primary source of LREEs since the 1960s, attributed to the fact 
that these deposits are usually enriched in LREEs (Van Gosen et al., 
2017). However, there are a few exceptional cases where carbonatite 
deposits exhibit high enrichment in HREE, such as the Dashigou site in 
China and the Bear Lodge site in the USA (Song et al., 2015; Andersen 
et al., 2016, 2017; Smith et al., 2018; Cangelosi et al., 2020). This type of 
deposit is usually enriched in LREEs due to the significant LREE/HREEs 
fractionation in carbonatites (Xu et al., 2010). Multiple mechanisms 
contribute to LREE enrichment in carbonatites, encompassing their 
preferential incorporation into carbonatite melts within mantle sources 
(Foley et al., 2009) or into carbonatite liquids during immiscibility 
(Martin et al., 2013; Nabyl et al., 2020). Additionally, post-magmatic 
geological processes such as hydrothermal activity can further 
enhance the enrichment of LREEs or depletion of HREEs within carbo
natite deposits (Broom-Fendley et al., 2017; Anenburg et al., 2020; 
Beland and Williams-Jones, 2021). The main REE minerals associated 

with carbonatites include bastnäsite, monazite, xenotime, and parisite. 
These minerals serve as the primary sources of REEs within carbonatite 
deposits (Wang et al., 2020).

Deposits associated with alkaline igneous rocks. Generally 
speaking, alkaline igneous rocks typically consist of amphiboles, alkali 
pyroxenes, and feldspathoids. They are formed when the magma has an 
excess of sodium and potassium content beyond what is required for 
feldspar formation, leading to the formation of feldspathoids. Alkaline 
igneous rocks exhibit a broad range of compositions, ranging from ul
tramafic to felsic (Dostal, 2017). In some cases, alkaline rocks may be 
referred to as peralkaline if their molar proportion of potassium plus 
sodium is higher than aluminum (Spandler and Morris, 2016; Dostal, 
2017). Peralkaline rocks are characterized by their significant enrich
ment both in high-field strength elements (HFSEs, including titanium 
(Ti), zirconium (Zr), niobium (Nb), and REEs) and alkali metals (Dostal, 
2017), and can be divided into two groups of agpaitic and miaskitic 
rocks. In the miaskitic rocks, REEs and HFSEs are predominantly hosted 
by minerals like zircon and titanite while the agpaitic rocks are featured 
by Na–Ca-HFSE minerals with structurally incorporated halogens (Beard 
et al., 2023). The main evidence suggests that (per)alkaline rocks form 
though extensive fractional crystallization of alkaline basaltic magmas, 
which originate from partial melting of mantle sources (Pilet et al., 
2008). However, some researchers have proposed that the formation of 
peralkaline melts is often accompanied by metasomatic pre-enrichment 
of halogens, HFSEs, REEs, and other rare and incompatible elements in 
mantle sources. This process results in the unique enrichment of these 
elements observed in the subsequently produced peralkaline rocks 
(Upton et al., 2003; Marks and Markl, 2017). The mineralization of REEs 
in alkaline igneous rocks commonly takes place during the late stages of 
magma evolution, and typically hosted by nepheline syenites, peralka
line granites (such as pegmatites, felsic dikes), and peralkaline felsic 
volcanic rocks (such as trachytes) (Beard et al., 2023). The dominant 
alkaline igneous rocks related REE mineralization includes bastnäsite, 
loparite, eudialyte, xenotime, gittinsite, zircon, monazite, and fergu
sonite (Chakhmouradian and Zaitsev, 2012; Dostal, 2017). Peralkaline 
rocks related REE deposits generally exhibit comparatively low-grade 
mineralization, but are usually enriched in HREE (Castor and Hedrick, 
2006; Spandler and Morris, 2016).

Magmatic-hydrothermal deposit. Some REE deposits are not 
obviously associated with carbonatites or alkaline igneous rocks. The 
iron oxide-copper-gold (IOCG) deposits are one of the most significant 
type of this group (Groves et al., 2010; Slack et al., 2016). The renowned 
Olympic Dam deposit in South Australia represents the first discovery of 
this deposit type (Roberts and Hudson, 1983; Tappert et al., 2013). The 
occurrence of REE minerals varies in different IOCG deposits, the main 
REE phases are allanite, carbonates and monazite, apatite and/or fluo
rite (Skirrow, 2022). Additionally, some magmatic hematite-magnetite 
bodies can concentrate economically valuable REE-bearing mineral, 
such as apatite. An example of this is the Pea Ridge Fe Oxide-REE De
posit (southeast Missouri, USA) (Sidder et al., 1993; Harlov et al., 2016). 
These deposits, primarily characterized by the presence of iron oxide 
ores, are alternatively referred to as iron oxide-apatite bodies (Reich 
et al., 2022; Yan and Liu, 2022). Besides, high REE concentrations are 
also discovered in vein and skarn systems where bastnaesite and 
monazite emerge as the primary REE mineral phases (Holtstam et al., 
2014; Goodenough et al., 2018). An example of this is the Bastnäs-type 
Fe-REE-(Cu–Mo–Bi–Au) deposits in Bergslagen, Sweden (Holtstam et al., 
2014). Occasionally, REE mineralization may be hosted within sedi
mentary rocks or mafic gneiss; however, REEs are typically concentrated 
through magmatic-hydrothermal processes or derived from hydrother
mal fluids. An illustrative case is the accumulation of xenotime in the 
Music Valley area of southern California, USA, found within the Prob
able Precambrian-aged Pinto Gneiss (McKinney et al., 2015). Another 
example is the occurrence of REE-F-Ba mineralization hosted by the 
Cedared and Burnais formations in Rock Canyon Creek, British 
Columbia, Canada (Green et al., 2017; Simandl et al., 2021).

and secondary deposits resulting from weathering and sedimentary 
processes (Walter et al., 2010). Here we follow a classification based on 
their mineralogic associations and the geological processes from which 
they have formed (Jaireth et al., 2014; Xie et al., 2019; Batapola et al., 
2020; Dushyantha et al., 2020). These categories include.



Residual weathering deposits. Laterites are residual accumula
tions formed in situ through continuous tropical weathering processes, 
that results in the disintegration of primary rock-forming minerals. 
Subsequently, some labile elements (such as sodium, magnesium and 
calcium) leach out, leaving behind those relatively immobile elements 
(such as aluminum and iron) in place. Hence, if the parent rocks, like 
carbonatites and granites, are enriched in REEs, then economic deposits 
of REEs may form after weathering (de Oliveira and Imbernon, 1998; 
Witt et al., 2019; Zhukova et al., 2021). For example, laterite regolithes 
weathered from carbonatites typically exhibit high-grade mineraliza
tion, with REO contents ranging from 10% to 25% (Walter et al., 2010). 
One notable case is the Mount Weld REE deposit in Western Australia, 
which consists of a fully weathered thick laterite layer overlying the 
Proterozoic carbonatite (Zhukova et al., 2021). Although the primary 
carbonatite contains only 0.1–0.2% REO, the extreme enrichment at 
Mount Weld reaches 18.0% REO (Castor and Hedrick, 2006; Green et al., 
2017). Ion-adsorption deposits (IADs), another type of residual weath
ering deposit, viz. residual deposits of REE-bearing clays, are a specific 
type of REE deposits where REEs adsorption happens on clay mineral 
surfaces in the weathering profile of certain rocks (Yang et al., 2013; 
Moldoveanu and Papangelakis, 2016; Estrade et al., 2019). The majority 
of these deposits have been exploited throughout southern China, and 
are hosted within the weathered REE-enriched granites’ profiles, such as 
provinces of Hunan, Jiangxi, Fujian, and Guangdong (Kanazawa and 
Kamitani, 2006; Yang et al., 2013). Also, They have the potential to be 
found globally. In 2020, a major new clay hosted ionic REE deposit has 
been discovered at Mt Clere, Australia (Krakatoa, 2020). and some IADs 
have been discovered in SE Asia and Japan (Li et al., 2017; Yamaguchi 
et al., 2018). These clay minerals mainly consist of kaolinite, followed 
by varying amounts of illite, halloysite, montmorillonite, vermiculite, 
and chlorite (Huang et al., 2021b; Zhu et al., 2022b). Meanwhile, Fe–Mn 
oxides sometimes play critical roles in the enrichment of REE, especially 
for the element Ce, in a relatively oxidized environment, Ce undergoes 
conversion from Ce3+ to Ce4+, thereby forming precipitates within 
Fe–Mn oxides or Ce-bearing minerals. This process leads to an enrich
ment of Ce in the weathered surface horizon (Bao and Zhao, 2008; Zhu 
et al., 2022a).

Placers. These deposits are sedimentary accumulations of durable, 
heavy minerals, along with sand and gravel, that are transported and 
deposited by coastal activities and/or river currents (Komar, 2007; 
Amalan et al., 2018). These detrital materials usually come from 
high-grade metamorphic or granitic rocks, because these parent rocks 
often contain enriched minerals of Ti, Zr, and REEs. Currently, more 
than 360 REE-enriched placer deposits have been identified (Orris and 
Grauch, 2002). However, the most economically significant placer de
posits typically have marine origins, found on or near the current 
shorelines (Cronan, 1999). An example of such marine placer deposits 
with elevated levels of REE minerals occur along the Australian coast 
(Cronan, 1999). The primary REE-bearing minerals found in these de
posits are monazite, with occasional xenotime, euxenite, fergusonite, 
allanite, samarskite, knopite, pyrochlore, and loparite (Möller, 1986). 
However, monazite is commonly derived from granites, leading to a 
relatively high thorium (Th) content, posing a significant challenge 
during processing.

Offshore sedimentary deposits. Phosphate rocks have the potential 
to serve as a substantial resource for REE, given their widespread pro
duction globally and high REEs contents (Pufahl and Groat, 2017; Wu 
et al., 2018; Rout et al., 2023). Currently, the proven marine sedimen
tary phosphorites account for the majority of global phosphate re
sources, approximately 95% of the total (Pufahl and Groat, 2017; Wang 
et al., 2023c). Wherein the marine sedimentary phosphate deposits are 
mainly composed of carbonate fluorapatite. REEs have ion radii similar 
to Ca2+ (Auer et al., 2017), and therefore, they preferentially replace Ca 
in the crystal lattice of phosphate minerals, leading to the widespread 
presence of significant amounts of REEs in phosphate ores. At present, 
some potential REE-enriched sedimentary phosphate deposits have been 

found in Australia (Emsbo et al., 2015; Valetich et al., 2022), USA 
(Emsbo et al., 2015), Venezuela (Linares et al., 2023), Northern Africa 
(Tunisia, Algeria) (Buccione et al., 2021), and Northwestern Saudi 
Arabia (Ahmed et al., 2022). Moreover, studies have indicated that Mn 
nodules and Fe–Mn crusts discovered in the Pacific Ocean’s deep-sea 
regions have high levels of HREEs, that can be recognized as REE de
posits (Huang and Fu, 2023).

REEs in coals. In recent years, REEs in coal have attracted wide
spread attention due to their stable geochemical characteristics and 
potential economic value. However, the REE concentrations in coal 
seams are typically not significantly higher than those found in normal 
sedimentary rocks. The significance of these resources lies in the large 
tonnage of rock rather than in exceptionally high concentrations of REE. 
According to statistics, the average abundance of REEs in coal world
wide was estimated to be 68 μg/g (Ketris and Yudovich, 2009). China’s 
coal has rare earth content at 138 μg/g (Dai et al., 2008), approximately 
twice the global average. Other countries and regions, such as Turkey, 
North Korea, and the United States, have contents of 116, 77, and 62 
μg/g, respectively (Finkelman, 1993; Zhang et al., 2015). However, the 
average REEs content in coal ash worldwide is 403.5 μg/g (Ketris and 
Yudovich, 2009), while in USA, the average REE content in coal ash is 
approximately 513 μg/g (Finkelman, 1993). This indicates that during 
the combustion process of coal, REEs are primarily enriched in the 
combustion products, with this enrichment being closely related to the 
coal compositions, combustion methods and characteristics of the ash. 
Higher temperatures can lead to the evaporation of more volatile ele
ments, while a longer residence time of fly ash allows for greater ab
sorption of REEs from the gas phase (Wu et al., 2022). The criterion set 
by the US Department of Energy for assessing raw coal as REEs resources 
specifies that the total REEs content should exceed 300 μg/g on a dry 
coal basis (Fu et al., 2022). Therefore, in the research report on rare 
earth elements published by the U.S. Department of Energy in 2017, it 
explicitly emphasizes that coal and its combustion products in USA can 
serve as potential sources of REEs (Conrad, 2017). Currently, 
REEs-enriched coals are primarily distributed in China (Dai et al., 2016; 
Yin and Song, 2022), Russia (Seredin, 1996; Seredin and Dai, 2012), 
USA (Taggart et al., 2016; Lin et al., 2018; Bagdonas et al., 2022). Ac
cording to previous research, the genesis of REEs in coals can be clas
sified into four types: terrigenous, tuffaceous, infiltrational or meteoric 
groundwater-driven, and hydrothermal types (Seredin and Dai, 2012). 
Furthermore, existing research indicates that REEs in coal exist in the 
forms of rare earth minerals, organic compounds, and ion adsorption 
(Jordens et al., 2013; Zhang et al., 2017; Finkelman et al., 2018).

4. The global distribution of REE deposits and some major
deposits

REE deposits have been identified in over 34 countries, with a total 
estimated 130 million metric tons of global REEs reserves based on REO 
content (Table 2). The leading countries in terms of reserves are China 
(~33.8%), Vietnam (~16.9%), Brazil (~16.2%), Russia (~16.2%), 
India (~5.3%), Australia (~3.2%), and the USA (~1.8%) (U.S.G.S., 
2023). Since the late 1990s, China has been dominating the REE market, 
both in the supply of raw ores and processed/purified products, ac
counting for over 90% of global production from the 2000s to the early 
2010s (Drobniak and Mastalerz, 2022). However, in recent years, due to 
adjustments in the international REE market, there has been an increase 
in REO production outside of China. As shown in Table 2, China’s 
contribution has now fallen to the range of 55%–70% of global pro
duction (U.S. Geological Survey, 2021, 2023), while the production in 
the United States, Vietnam, and Thailand is increasing year by year.

4.1. China

China’s REE deposits are distributed mainly in Inner Mongolia, 
Sichuan, Fujian, Guangdong, Hunan, Jiangxi, Shandong, and Yunnan 



(Wübbeke, 2013; Lei et al., 2017; Wang et al., 2018). Among these de
posits, the most economically significant are the carbonatite-related REE 
deposits, notably the Bayan Obo deposit, recognized as the largest REE 
deposit in the world (Li et al., 2022; Wei et al., 2022), and the Mao
niuping deposit, which is China’s second-largest REE resource (Weng 
et al., 2022a, 2022b). Additionally, there are numerous REE-bearing 
ion-adsorption clay deposits located in the southeastern provinces of 
China (Ou et al., 2022; Zhao et al., 2022), and also some alkaline-related 
REE deposits, such as Weishan deposit (Zhao et al., 2023). China began 
REO production in the 1980s, and had emerged as the dominant pro
ducer in the global market by the mid-1990s (Drobniak and Mastalerz, 
2022). In the early 2000s, the Chinese government introduced export 
quotas for REEs, which were significantly reduced since 2010 (Lee and 
Dacass, 2022).

4.1.1. Carbonatite-related REE deposits
China has identified over 20 carbonatite-related REE deposits or 

sites, including the giant Bayan Obo and Maoniuping deposits, as well as 
the large Dalucao and Miaoya deposits. Additionally, there are several 
medium to small REE deposits and mineralized sites (Xie et al., 2020). 
These carbonatite-related REE deposits typically exhibit enrichment in 
LREEs, while a minority of locations, such as Dashigou, demonstrate 
higher enrichment in HREEs. The HREE-enriched minerals in these de
posits are predominantly fluorcarbonates, with secondary REE miner
alization occurring through the replacement of primary magmatic 
monazite-(Ce) by minerals like xenotime-(Y) and churchite-(Y) (Smith 
et al., 2018; Cangelosi et al., 2020).

Bayan Obo deposit. The Bayan Obo Fe-REE-Nb deposit is situated in 
the northwest region of Baotou in Inner Mongolia Autonomous Province 
(Kanazawa and Kamitani, 2006). It is hosted within the Bayan Obo 
group, which consists of nine Paleo-Mesoproterozoic sedimentary units, 
termed as H1 to H9 in ascending stratigraphic order, but the division of 
H8 lithology is controversial (Tang et al., 2021). These units primarily 
comprise slates and meta-sandstones, but H8 is predominantly 
composed of dolomitic marbles, Featuring both fine- and coarse-grained 
forms. The H8 unit forms a spindle-shaped stratiform body extending 
from east to west, measuring over 18 km in length and more than 1 km in 
width. It serves as the primary host rock for the majority of the ores 
(Chao et al., 1992; Yang et al., 2009, 2011a). Within the deposit, car
bonatite dikes in different types are widely distributed (Yuan et al., 
1995; Yang et al., 2011b). The genesis of this deposit remains a topic of 
debate due to the complex ore-forming process, primarily attributed to 

extensive and intense hydrothermal alterations and transformations 
during the late stages of mineralization and metamorphism (Yang et al., 
2009, 2017; Lai et al., 2015; Smith et al., 2015; She et al., 2021). 
Fig. 3a–d illustrates one possible model for the genesis of this deposit. 
The evolution of carbonatite involves distinct stages: a magmatic phase 
featuring Mg–Fe-carbonatite (original ore-hosting dolomite), a carbo
thermal stage driven by Ca-carbonatitic fluids, and a hydrothermal stage 
with significant fluorite deposition and alkali alteration. After that, 
intense geological tectonic movement has led to local modification and 
REE-Nb enrichment. The complex multi-stage REEs mineralization pri
marily results from metasomatism where fluids derived from 
Ca-carbonatite interact with slightly preceding Mg–Fe-carbonatite in
trusions. Moreover, it should be noted that while the Mg–Fe-carbonatite 
magma exhibited enrichment in REEs, the substantial contribution to 
the eventual REEs enrichment in the ore-hosting dolomite, forming the 
mined orebodies, came from post-magmatic fluids associated with 
Ca-carbonatite (Liu et al., 2020). The main REE-bearing minerals found 
in the Bayan Obo deposit include bastnaesite-(Ce) and monazite-(Ce), 
along with various other REE and Nb minerals such as huanghoite, 
aeschynite-(Ce), felgusonite, and columbite (Fan et al., 2016). The de
posit contains approximately 800 Mt of REE reserves with an average 
grade of 6% total REO. Additionally, it is estimated to hold 2.2 Mt of Nb 
reserves with an average grade of 0.13% Nb2O5, as well as at least 1500 
Mt of total Fe reserves with an average grade of 35% (Fan et al., 2014). 
The deposit is particularly rich in LREEs, which account for up to 97% of 
the total REEs present (Su, 2009; Yang et al., 2013).

Maoniuping deposit. This deposit is situated in the western region 
of the Yangtze Plate and the eastern region of the Tibetan Plateau, 
controlled by the Panxi rift (Liu et al., 2015; Wang et al., 2020). Host 
rocks are composed of Devonian-Permian argillaceous clastic sediments, 
limestones, and Tertiary talus. Igneous rocks in the area consist of 
Yanshanian granite, an alkaline syenite-carbonatite complex, and 
Mesozoic rhyolite, which are widely distributed across the deposit. REE 
mineralization happens within a vein system, primarily consisting of 
pegmatitic veins of barite and calcite, as well as line veins found within 
the Maoniuping northeast-trending syenite-carbonatite complex. This 
complex extends approximately 1400 m in length and has a width 
ranging from 260 to 350 m (Yuan et al., 1995). A study of fluid in
clusions has been conducted to investigate the origin of this deposit, as 
illustrated in Fig. 3e. The evidence suggests that the ore-forming fluids 
originated from carbonatite-syenite complexes. Fenitization happened 
during the hydrothermal stage I, followed by the appearance of 
immiscible fluids in hydrothermal stage II. The final stage witnessed the 
occurrence of rare earth mineralization (Zheng and Liu, 2019). How
ever, a recent study proposes that shallow-seated, sustained 
mantle-derived magma underintrusion coupled with stable regional 
thermal anomalies contributed to the favorable conditions for REE for
mation (Weng et al., 2022a). The principal REE-bearing mineral in this 
deposit is bastnäsite-(Ce), accompanied by minor amounts of par
isite-(Ce) and monazite-(Ce). The estimated REE reserves are typically 
enriched in LREEs (Yuan et al., 1995; Zheng and Liu, 2019). Other 
associated reserves include 3.78 Mt of barite, 0.33 Mt of Pb, 2.40 Mt of 
fluorite, and 174 tons of Ag (Xu et al., 2012).

4.1.2. Ion-adsorption clay deposits
In Southern China, another typical REE deposit are found as 

weathered-crust elution deposits and termed “ion adsorption deposits 
(IADs)”. These deposits usually contain high value of LREE (Huang et al., 
2021a; Wang et al., 2023b), with a minority being rich in HREE content 
(such as Gd–Lu) (Kynicky et al., 2012; Moldoveanu and Papangelakis, 
2016; Xie et al., 2020). The variations in compositions within IADs are 
primarily influenced by the diverse chemical compositions of the parent 
rocks (Chu et al., 2024). These deposits form under relatively stable 
tectonic geological conditions (low uplift and low erosion rates) and are 
restricted to certain areas of Southern China (Takeda and Okabe, 2014). 
The formation of ion adsorption REE deposits occurs through the process 

Reserves Mine Production

2019 2020 2021 2022

China 44000000 132000 140000 168000 210000
Vietnam 22000000 1300 1000 400 4300
Brazil 21000000 710 1000 500 80
Russia 21000000 2700 2700 2600 2600
India 6900000 2900 3000 2900 2900
Australia 4200000 20000 17000 24000 18000
United States 2300000 28000 38000 42000 43000
Greenland 1500000 – – – –
Tanzania 890000 – – – –
Canada 830000 – – – –
South Africa 790000 – – – –
Myanmar NA 25000 30000 35000 12000
Burundi NA 200 500 200 –
Madagascar NA 4000 8000 6800 960
Thailand NA 1900 2000 8200 7100
Other countries 280000 66 100 60 80
total 130000000 220000 240000 290000 300000

Note: NA, not available. – Zero.

Table 2 
Worldwide reserves of REEs (REO basis) in 2022 and global REE production 
from 2019 to 2022 (unit: metric tons, data from references (U.S. Geological 
Survey, 2021, 2023)).



of weathering and leaching of parent rocks (particularly granite, 
gneisses, and granite porphyry) by water in warm and high-humidity 
near surface environments. During migration, the dissolved REE ions 
are adsorbed by clay minerals (Van Gosen et al., 2014; Estrade et al., 
2019). Microbes can also act a positive effect in the mobilization and 
fractionation of REEs during weathering (He et al., 2023). The weath
ered zone is rich in REEs, with a thickness typically ranging from 3 to 10 
m. Based on the mineralogy, it can be divided into four layers (Bao and
Zhao, 2008): an upper soil layer (0–2 m); a fully weathered horizon
(5–10 m) that constitutes the main REEs orebody with general REE

concentrations of 0.03–0.15% (Yang et al., 2013), a semi-weathered 
parent rock horizon (3–5 m); and a parent rock horizon or weakly 
weathered layer, a typically case is shown in Fig. 4. The advantage of 
this type deposit is that the adsorbed REEs can be easily extracted from 
the clay through ion exchange (Wall, 2014; Deng et al., 2019). Hence, 
despite the relatively small scale, and low REE concentrations of these 
deposit, it is still economically feasible to extract REEs from these clay 
deposits. According to the data, ion-adsorption clay deposits only ac
count for 2.9% of China’s total REE reserves, but they have contributed 
to 26% of China’s total REE production from 1988 to 2008 and up to 

Fig. 3. Left: Models for formation of the Bayan Obo REE deposit (Liu et al., 2020) ((a) original ore-hosting dolomite formation, (b) carbothermal stage, (c) hy
drothermal stage, (d) geological tectonic movement) and Right: ore-forming fluid evolution and mineralization process in the Maoniuping REE deposit (Zheng and 
Liu, 2019).

Fig. 4. A typical model of ion-adsorption clay deposits in West Yunnan, China (Zhu et al., 2022b).



et al. reported a crystallization age of 30.2–31.6 Ma for the ferro
carbonatite based on U–Th–Pb isochrons (Nguyen Thi et al., 2014).

Nam Xe REEs deposit. This deposit is located on both sides of the 
Nam Xe River valley and divided by the east-west striking Ban Pan- 
Phong Tho fault into a northern and a southern part (Möckel et al., 
2019). The southern deposit comprises carbonatitic dyke-like structures 
in the host rocks of Triassic trachyandesite and Permian limestone, 
where the northern deposit is a deeply weathered residual with a 
thickness up to 40 m, laying on top of Permian limestone (Phan et al., 
2019). In the northern deposit, the weathered profile has a total REOs 
head grade of 4–5 wt% while the primary ores in the southern deposit 
show an average content of total REOs about 1.4 wt% (Cardenas-Vera 
et al., 2022). The Nam Xe orebodies are exceptionally rich in HREEs, 
especially Y, Eu, and Gd, and REEs associated minerals are parisite, 
bastnaesite, gadolinite, apatite (Moody, 2013).

4.2.2. Alkaline granitic rocks and their weathered residuum
Alkaline granitic rocks are widely distributed in the Tu Le basin and 

Phan Si Pan (PSP) Uplift area in Northwestern Vietnam. These areas lie 
along the boundary between the Archean-Proterozoic South China Block 
and the accreted Gondwanan terranes of Southeast Asia. The northern 
part of this region is known as the Ailaoshan-Red River shear zone, while 
the southern area is defined by the Song Ma suture (Fig. 5) (Pham et al., 
2020). The PSP uplift primarily consists of alkaline and sub-alkaline 
Phanerozoic granitoids found in the areas of the Phu Sa Phin, Muong 
Hum, Ye Yen Sun, and Phan Si Pan. Besides, Archean metagranitoids of 
the Ca Vinh complex, as well as Paleoproterozoic Xom Giau and Neo
proterozoic Po Sen granitoid complexes are also developed in this region 
(Usuki et al., 2015). In contrast, the Tu Le basin is composed of rhyolite 
and trachyte of Jurassic to Cretaceous age (Luong, 1988; Anh et al., 
2004). Related REE deposits are located in Dong Pao, Muong Hum, Yen 
Phu, and Then Chan. The Dong Pao REEs deposit is famous for its 
ion-adsorption clay deposits (Tao et al., 2022).

Fig. 5. Locations of Vietnamese REEs deposits, modified from reference (Pham-Ngoc et al., 2016).

35% since 2009 (Su, 2009). Recently, Wang et al. reported a new 
technique, viz. electrokinetic mining for the selective recovery of REEs 
from ion-adsorption clay deposits in a more environmentally friendly 
and efficient manner (Wang et al., 2023a). In contrast to conventional 
techniques, the new method attains ~2.6 times higher recovery effi-
ciency, reduces leaching agent usage by around 80%, and diminishes 
metallic impurities in the obtained REEs by approximately 70%.

4.2. Vietnam

The earliest REE deposits discovered in Vietnam were the Nam Xe 
and Dong Pao REEs deposits in the northwest province of Lai Chau. After 
1990, four other major REE deposits were discovered: Sin Quyen in Lao 
Cai province, Yen Phu in Yen Bai province, Then Chau in Lai Chau 
province, and Muong Hum in Lao Cai province (Moody, 2013). Fig. 5 
shows the distribution of REE deposits in the northwest part of Vietnam. 
Despite having the second-largest REE reserves, Vietnam produced only 
4300 tons in 2022, accounting for 1.5% of the global total production for 
that year (Table 2).

4.2.1. Carbonatite-related REE deposits and their weathered residuum
Nam Xe carbonatites, located in the northwestern region of Vietnam, 

the only reported occurrence of carbonatite in Vietnam, are found in the 
intracontinental rift-Song Da zone (Nguyen Thi et al., 2014). Two main 
types have been identified: ferrocarbonatite and calciocarbonatite. The 
origin and formation of the Nam Xe carbonatites have been a subject of 
debate for years. Some previous studies suggested that ferrocarbonatites 
have hydrothermal/metasomatic origins, while calciocarbonatites are of 
igneous origin (IIa et al., 1961; Thanh et al., 2002; Chi et al., 2008; 
Nguyen Thi et al., 2014). Others have proposed that the carbonatites 
originated from the high-K subvolcanic intrusions of the Pu Sam Cap 
complex and have strong associations with Paleogene lamprophyres and 
lamproites in the region (Huong, 1994; Chi, 2003; Chi et al., 2008). Thi 



The alkaline-carbonatite complexes are mainly distributed in the 
margins of the Amazonas, Paraná, and Paranaíba basins and are asso
ciated with fracture zones (Dardenne and Schobbenhaus, 2001; Biondi, 

2003). These complexes typically exhibit circular structures and form 
radial drainage patterns (Biondi, 2003). Extensive tropical weathering 
has resulted in the development of thick weathering profiles, reaching 
depths of over 250 m. Monazite, apatite, zircon, pyrochlore, and calcite 
are the primary minerals associated with REE mineralization, while in 
the residual weathered material, monazite becomes the dominant 
REE-bearing mineral, accompanied by minor secondary apatite and 
aluminum phosphates (Morteani and Preinfalk, 1996; de Oliveira and 
Imbernon, 1998; Takehara et al., 2016).

Araxá REE deposit. The Araxá REE deposit consists of deeply 
weathered residual overlaying the Barrairo do Araxá carbonatite com
plex, with REEs mainly occurring within monazite and goyazite. The 
Araxá carbonatite circular intrusion is located in the Barreiro area, with 
a diameter of roughly 4.5 km, and around 16 km2 in area (Traversa et al., 
2001). Evidence suggests that the Araxá carbonatite has been there since 
the late Precambrian, while significant amounts of magma types and 
igneous forms were intruded during the Mesozoic era (Traversa et al., 
2001). Additionally, studies by Gibson et al. indicate that the alkaline 
magmatism in this region happened between 80 and 90 million years 
ago (Gibson et al., 1995). In carbonatite rocks, REE mineralization is 
primarily found in minerals like apatite, pyrochlore, zircon, monazite, 
and calcite (Morteani and Preinfalk, 1996), whereas in the residual 
weathered material, monazite, aluminum phosphates, and secondary 
apatite are the main REE-bearing minerals (Morteani and Preinfalk, 
1996; de Oliveira and Imbernon, 1998; Toledo, 1999).

4.3.2. Alkaline granitic rocks and their weathered residuals
Alkaline granitic rocks related REE-bearing deposits are the second 

primary source in Brazil, and are enriched in HREEs. These deposits are 
typically found within multiphase anorogenic granite complexes. Dur
ing the later stages of magma fractional crystallization, incompatible 
elements, including REEs, become highly enriched (Hannah and Stein, 
1990). In the case of alkaline granitic deposits, in contrast to carbonatite 
deposits, HREEs tend to concentrate in the lower part of the weathered 
residuals, forming ion-adsorption clay deposits. HREEs are mainly 
associated with minerals such as xenotime, fergusonite, samarskite, and 
gagarinite. One renowned deposit of this type is the Pitinga deposit 
(Pollard, 1995; Wu et al., 1995; Long et al., 2012).

4.3.3. Placers
Placer deposits in Brazil are known for heavy minerals including 

ilmenite, zircon, rutile, and monazite, especially monazite (Möller, 
1986; Dardenne and Schobbenhaus, 2001; Pires and Miano, 2014). 
These heavy minerals are the weathered products of continental igneous 

Fig. 6. Two metallogenic episodes showing REE mineralization of early stage (a) and remobilization of later stage (b). A proposed zipper tectonic model for the Sin 
Quyen IOCG-REE mineralization (c). Data from references (Ngo et al., 2020; Duong et al., 2021).

4.2.3. Iron oxide-copper-gold deposit
The well-known deposit of this type is the Sin Quyen IOCG-REE 

deposit, considered one of the largest IOCG deposits in the north of 
Vietnam (Lao Cai province) (Li and Zhou, 2018). It is situated in the 
Phan Si Pan uplift, in close proximity to the Red River shear zone (Duong 
et al., 2021). The ore body primarily occurs within the Proterozoic 
metamorphic and sedimentary rocks of the Sin Quyen formation, 
particularly in contact with granite-gneiss and amphibolites (Ta, 1975). 
Recent studies (Ngo et al., 2020; Duong et al., 2021) have reported two 
stages of mineralization at approximately 880 Ma and 840 Ma, respec-
tively. The first mineralization stage lead to the REE-rich allanite for-
mation, whereas the main IOCG ores were formed during the second 
mineralization stage, leading to extensive alteration of the primary 
allanite, see Fig. 6a and b. A zipper tectonic model has been proposed to 
explain the mineralization process (Fig. 6c). In this model, the clockwise 
rotation of the Indochina block led to the emergence of three distinct 
tectonic stress regimes: one characterized by a compressive regime, 
another by a pure strike-slip regime, and the remaining one by an 
extensional regime. The Sin Quyen IOCG deposits are situated within the 
Red River shear zone of the pure strike-slip zone (Duong et al., 2021). 
The REE-bearing minerals are enriched in LREEs such as La, Ce, Pr and 
Nd, including bastnäsite-(Ce), monazite-(Ce), allanite-(Ce), chevkini-
te-(Ce), columbite-(Fe), aeschynite-(Ce), and ilmenite (Li and Zhou, 
2017; Pieczonka et al., 2019). The proven reserves of the Sin Quyen 
deposit amount to 52.8 Mt of ore, containing 0.7% LREE (La, Ce, and 
Nd), as well as 14% Fe, 0.91% Cu, and 0.44 g/t Au (McLean, 2002).

4.3. Brazil

REE deposits in Brazil are associated with various geological features 
such as carbonatites, alkaline granitic rocks, residual weathering, and 
marine placers. Brazil possesses the world’s third largest REE resource; 
however, the production of REEs in 2022 was only 80 tons (Table 2). 
This limited production could be attributed to the relatively smaller size 
of the deposits and the mining techniques employed. Currently, three 
primary REE projects are in progress: the Araxá project in Araxá alkaline 
carbonatite, Minas Gerais State; the Serra Verde Project (an IAD) in the 
Serra Dourada biotite granite, Goiás State; and the Pitinga Project in the 
Madeira alkali granite, Amazonas State (Takehara et al., 2016).

4.3.1. Carbonatite-related REE deposits and their weathered residuals



apatite-rich residual zones (Lottermoser, 1990). This process has 
contributed to Mount Weld being one of the highest-grade REE deposits 
globally, with 23.8 million tonnes of ore grading at 7.9%. Additionally, 
minor amounts of Nb, Ta, and P2O5, are present as by-products. REEs are 
found in various minerals, including monazite, churchite, 
plumbogummite-group minerals, and rhabdophane (Lottermoser, 
1990).

Mountain Pass REE deposit, USA. This deposit is located in the 
central Mojave Desert of California, USA, and is known for owning the 
world’s second largest REE deposit. The REEs are enriched in the Sul
phide Queen Carbonatite, a special carbonatite that differs from others 
in the world. Unlike most carbonatites that are associated with alkaline 
rocks, this carbonatite is associated to the ultrapotassic alkaline rocks, 
by intruding into the latter as a tabular intrusion (Castor, 2008). How
ever, the Th–Pb dates of monazite indicate this carbonatite has an age of 
1375 ± 7 Ma, younger than that of the ultrapotassic rocks (1400 ± 7 
Ma) (DeWitt et al., 1987). Studies have suggested that the carbonatite 
magma shares a common origin with the ultrapotassic rocks, likely 
derived from mantle sources enriched through metasomatism or 
contamination by subducted crustal rocks (Castor, 2008). But the origin 
of the carbonatite in the Mountain Pass deposit still remains highly 
controversial (Haxel, 2005; Poletti et al., 2016). For example, carbo
natites are surrounded by a fenitisation alteration zone, or existed 
fluorite veins suggesting a hypothesis of alkali metasomatism (Smith 
et al., 2016). The major and trace elements analysis of the carbonatite 
and ultrapotassic rocks imply that these two rocks originated from 
separate mantle melts (Poletti et al., 2016). Bastnaesite-(Ce) is the major 
REE-bearing mineral with minor monazite-(Ce) and parisite-(Ce) (Smith 
et al., 2016). This deposit is extremely enriched in LREEs with an ore 
grade of 8.5% total REOs but Nb depleted (Castor, 2008; Smith et al., 
2016; Zhou et al., 2016), and it used to be the largest LREE mining 
project from the 1960s to the mid-1990s in the world (Castor, 2008). 
The mining of this deposit was stopped several times for various reasons 
but was reopened again in the first quarter of 2018 to meet the domestic 
high REE demand (Koltun and Tharumarajah, 2014; Ash, 2019).

5. Conclusions

REEs are crucial for various high-technological industrial applica
tions, given their special physicochemical properties. They find exten
sive use in metallurgy, energy, military, and agriculture sectors, leading 
to a steady growth in demand. However, the production of REEs is 
limited by geographical constraints, mining and smelting technologies, 
and policies, among other factors. As a result, the global supply of REEs 
remains unstable and uncertain. Currently, many countries are actively 
seeking to acquire additional REE resources to meet their domestic 
needs. In light of these circumstances, we aimed to provide a timely and 
in-depth review of REE mineralogy, occurrences, distributions, and the 
genesis of major REE deposits. The goal was to enhance our under
standing of REE resources worldwide and aid in the exploration of new 
REE mineral deposits. Although we have classified REE deposits based 
on their occurrences, the majority cannot be attributed to a single 
mineralization process. This is because mineralization resulting from 
geological activities is often a complex process involving multiple pe
riods, stages, and interrelated constraints. At present, carbonatite- 
related REE deposits and their weathered residuals, and IADs stand 
out as the most prominent REE deposits being actively exploited glob
ally. But REE-enriched phosphate deposits and coal mines have the 
potential to serve as a substantial resource for REE. China remains the 
world’s largest producer of REEs, but countries worldwide are expand
ing their domestic REE production capacity to alleviate concerns about 
the supply of rare earths due to geopolitical policies.

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

rocks which formed during orogenic events, and mainly concentrated in 
the Tertiary-aged units, for example, a lot of shoreline deposits are 
hosted in the Barreira group (Sengupta and Van Gosen, 2016; Takehara 
et al., 2016). REEs that occur within these heavy minerals are scattered 
along the Brazilian coast, ranging from Pará to Rio Grande do Sul 
(Cavalcanti, 2011). Placer deposits were historically the first deposits 
that were mined for REEs in Brazil and were critical resources until the 
mid-1960s (Serra, 2011).

4.4. Australia, India, USA, and other countries

These countries possess numerous medium to small REE deposits; 
however, the individual REE reserves of each country do not exceed 3 wt 
% of the global total (Table 2). Australia’s rare earth mines are primarily 
extracted from placers, carbonatites and their weathering residuals, and 
IOCG (Mudd, 2008; Jaireth et al., 2014; Subasinghe et al., 2022). 
Additionally, Australia used to be the world’s largest monazite supplier 
because of the widespread distribution of heavy mineral sand placer 
deposits containing REE minerals along its coastline. This dominance 
continued from the early years up to the mid-1990s (Mudd, 2008; 
Jaireth et al., 2014; Subasinghe et al., 2022). Today, Mount Weld is 
Australia’s leading rare earth ore producing area (Zhukova et al., 2021). 
The main sources of REE deposits in India are predominantly carbo-
natites and placers (Krishnamurthy, 2020; Verplanck, 2020). A notable 
potential for REE resources in beach placers has been identified along 
the southern coast of Odisha, India, stretching from Garampeta to 
Markandi beach (Ghosal et al., 2020). While carbonatites constitute the 
major REE deposits in the USA, there are also small amounts of hydro-
thermal REE deposits, placers, and alkaline igneous rocks associated 
deposits. Also, there have been proposals suggesting marine phospho-
rites and coals as potential sources of REE (Castor, 2008; Long et al., 
2012). Currently, carbonatite-related REE are mined in the USA from 
Mountain Pass, but REEs are also produced as a byproduct of mining Ti 
and Zr in beach placers (Bailey, 2021), such as Georgia coastal region 
(Oladeni, 2022). Studies have also indicated a high concentration of REE 
in the mined kaolin ore, kaolin mine tailings, and the kaolin-associated 
sands, resulting from the weathering of granitic parent rocks in the 
upper coastal plain of central Georgia (Cheshire et al., 2018; Boxleiter 
and Elliott, 2023). In regions of the Russian Far East, coal deposits have 
high concentrations of REEs (ranging from 300 to 1000 ppm) (Seredin, 
1996). Furthermore, some European countries are formulating strate-
gies to extract REEs as by-products of phosphate mining, particularly 
from apatite. Recent reports have indicated the sub-economic potential 
of REE resources in iron ore deposits, such as the Per Geijer deposit 
(Sweden), in association with phosphate mining, this deposit is the 
biggest reported REE deposit in Europe (Decrée et al., 2023). There are 
numerous reviews examining the REE resources in other various coun-
tries or districts, including Africa (Harmer and Nex, 2016; Buccione 
et al., 2021), Greenland (Thrane et al., 2014), Europe (Charles et al., 
2013; Decrée et al., 2023), Russia (Kalashnikov et al., 2016), Sri Lanka 
(Batapola et al., 2020), the Democratic Republic of Congo (Kasay et al., 
2022), Philippines (Gibaga et al., 2022), and Mongolia (Dostal and 
Gerel, 2023). Some notable REE deposits are summarized below.

Mount Weld REE deposit, Australia. This deposit is close to Lav-
erton, Western Australia, about 35 km to the southeast. and represents a 
weathering residual associated with carbonatites, with a thickness of up 
to 90 m (Willett et al., 1986). The carbonatite is situated within the 
Laverton Tectonic Zone and is surrounded by late Archean 
volcanic-sedimentary sequences (Henson et al., 2010). The primary 
carbonatite complex is dominated by coarse calcite-carbonatite, with 
small amounts of dolomite- and ferro-carbonatite, as well as phoscorite. 
A glimmerite alteration zone, approximately 0.5 km wide, developed 
around the central deposit. Studies indicate that this carbonatite com-
plex formed around 2025 Ma (Nelson et al., 1988; Graham et al., 2004; 
Czarnota et al., 2010). The weathering of the carbonatite has resulted in 
the decomposition of primary carbonatite, leading to the formation of 
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