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1. Introduction

According to the International Union of Pure and Applied Chemistry
(IUPAQ), rare earth elements (REEs) constitute a group of seventeen
elements, including scandium (Sc), yttrium (Y), and the lanthanide se-
ries (fifteen elements from Lanthanum (La) to Lutetium (Lu)) (Damhus
et al., 2005). Generally speaking, REEs can be divided into two group of
light REEs [LREEs, including La, cerium (Ce), praseodymium (Pr),
neodymium (Nd), promethium (Pm), samarium (Sm), and europium
(Eu)] and heavy REEs [HREEs, including gadolinium (Gd), terbium (Tb),
dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium
(Yb), Lu, Sc, and Y]. REEs find extensive use in various consumer
products due to their indispensability in electronic, optical, magnetic,
aerospace, biomedicines, energy storage, quantum information sciences,
and catalytic applications (Atwood, 2013; Binnemans et al., 2013; Zhou
et al., 2017; Goodenough et al., 2018; Balaram, 2019). Additionally,
they play a crucial role in energy efficiency improvement, environ-
mental protection, and the advancement of digital technology. The
current surge in demand for REEs is undeniable. However, it’s crucial to
note that global production is, in fact, keeping pace with this rising
demand, as indicated by the relatively stable REE prices (Filho et al.,
2023; Liu et al., 2023). What significantly influences the REE landscape
are political initiatives aimed at mitigating reliance on China as a pri-
mary source of critical raw materials (Hu et al., 2023a). This shift is
evident in the recent policy developments in countries like the USA,
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Deposits enriched in rare earth elements (REEs) are abundant and diverse in mineralogy, but those of current
economic value have extremely limited geographic distribution. Due to rapidly increasing demand and concerns
about supply chain security, new and improved methods of prospecting, beneficiation, separation, purification,
and recycling are needed. By overviewing the types and geographic distribution of REE deposits globally, their
petrogenesis and major mineralogic assemblages, this review aims to deepen understanding of different types of
REE deposits and distribution characteristics at the global level. Our review also seeks to provide a concise
summary of important background information that is accessible to researchers from a variety of disciplines who
are seeking to engage this rapidly expanding field.

Canada, and the EU (Kalantzakos, 2020; Theodosopoulos, 2020; Lew-
icka et al., 2021; Oh et al., 2021; Bide et al., 2022). These geopolitical
decisions play a more pivotal role than any inherent production-demand
imbalance. For example, In June 2021, the White House released a
one-hundred-day review report, utilizing the terms "strategic and critical
materials" as substitutes for critical minerals. Among these materials,
rare earths received the most attention in the report (White, 2021). This
report has had a profound impact on the future of the rare earth industry
and policies in the United States (Folkedahl et al., 2023; Vivoda, 2023).
The geopolitical competition over controlling rare earth resources un-
derscores the importance of REEs and the necessity for strategic man-
agement and conservation. (Geng et al., 2023).

Fig. 1 illustrates the known global occurrence of REEs mineralization
(Orris and Grauch, 2002). The distribution of global REE reserves is
highly concentrated in several countries, including China, Vietnam,
Brazil, Russia, India, Australia, the United States, Greenland, Tanzania,
Canada, and South Africa (Zhou et al., 2017; Balaram, 2019). Currently,
the major processed/refined pure REE producers in terms of quantity are
China, the United States, Australia, and Myanmar (U.S. Geological
Survey, 2023). Over the past decade, China alone has accounted for
around 70%-90% of global production and has been the leading pro-
ducer of REEs since the 1980s (Mancheri, 2012; Liang et al., 2014; Patil
et al., 2022). In order to preserve its REE resources to meet domestic
demands and address environmental concerns, China has implemented
various measures such as quotas, licenses, and taxes to restrict REEs
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1 Bokan Mountain, USA

2 Alay, Canada

3 Thor Lake, Canada

4 Nisikkatch, Canada

5 Hoidas Lake, Canada

6 Rock Canyon Creek, Canada
7 Elliot Lake, Canada

8 Kipawa/Zeus, Canada

9 Rex-Duquet/Rex South, Canada
10 Ashram/Eldor, Canada

11 Saint-Honoré, Canada

12 Fosse du Labrador, Canada
13 Strange Lake, Canada

14 Red Wine/Two Tom, Canada
15 Kwyjibo, Canada

16 Foxtrot/Deep Fox, Canada
17 Henley Harbour, Canada

18 Karrat, Greenland

19 Sarfartoq, Greenland

20 Qeqertaasaq, Greenland

21 Tikiusaaq, Greenland

22 Kvanefjeld, Greenland

23 Motzfeldt, Greenland

24 Snowbird, USA

25 North Fork, USA

26 Lemhi Pass, USA

27 Mountain Pass, USA

28 Bald Mountain, USA

29 Bear Lodge, USA

30 Iron Hill, USA

31 Wet Mountain, USA

32 Gallinas Mountain, USA
33 Pajarito Mountain, USA
34 La Paz, USA

35 Jemi, Mexico

36 Elk Creek, USA

37 Pea Ridge, USA

38 Hicks Dome, USA

39 Green Cove Springs, USA

40 Carolina Placers, USA

41 Sierra de Tamaulipas, Mexico
42 Morro dos Seis Lagos, Brazil
43 Pitinga, Brazil

44 Chiriguelo, Brazil

45 Catalao /11, Brazil

46 Araxd, Brazil

47 Serra Verde, Brazil

48 Barra do Itapirapua, Brazil

49 Pogos de Caldas, Brazil

50 Riode Janeiro/Buena Mine, Brazil
51 Bom Futuro, Brazil

52 Bahia, Brazil

53 Guaju Mine, Brazil

54 Penco Module/ Biolantanidos, Chile
55 Bou Naga, Mauritania

56 Tamazeght complex, Morocco
57 Matamulas, Spain

58 Coola, Angola

59 Longonjo, Angola

60 Lofdal, Namibia

61 Etanero, Namibia

62 Steenkampskraal, South Africa

63 Zandkopsdrift, South Africa
64 Karonge (Gakara), Burundi
65 Mrima, Kenya

66 Nkombwa Hill, Zambia

67 Wigu Hill, Tanzania

68 Kangankunde, Malawi

69 Songwe, Malawi

70 Congolone, Mozambique

* 122 Gascoyne, Kingfisher, Mick Well, Arthur River, Mangaroon, Mt Clere

*** 133 Lake Labyrinth Shear Zone, Comet

71 Pilanesberg, South Africa

72 Naboomspruit, South Africa

73 Phalaborwa complex, South Africa
74 Richards Bay, South Africa

75 Ambohimirahavavy, Madagascar
76 Mandena, Madagascar

77 Nile Delta and Rosetta, Egypt
78 Kizilcadren, Turkey

79 Aksu Diamas, Turkey

80 Ditrau, Romania

81 Fen, Norway

82 Norra Karr, Sweden

83 Olserum, Sweden

84 Bastnas, Sweden

85 Korsnas, Finland

86 Kiruna, Sweden

87 Khibiny complex, Russia

88 Lovozero complex, Russia

89 Inventory of monazite when USSR
90 Yaregskoe, Russia

91 Uranium Deposit, Mongolia

92 Zashikhinskoye, Russia

93 Beloziminskoe, Russia

94 Chuktokun, Russia

95 Tomtor, Russia

96 Seligdar, Russia

97 Gornoe Ozero, Russia

98 Khamna, Russia

99 Kutessay I, Kyrgyzstan

100 Mushgai Khudag, Mongolia
101 Lugin Gol, Mongolia

102 Wajiertage, China

103 Bayan Obo, China

104 Weishan, China

105 Maoniuping/Dalucao, China

106 Miaoya, China

107 IADs, South China
108 Sarnu, India

109 Amba Dongar, India
110 Orissa, India

111 Chavara, India

112 Manavalakurichi, India

113 IADs, Northern Myanmar

114 Thai Peninsula, Thailand

115 Perak, Malaysia

116 Then Chau deposit, Vietham
117 Muong Hum deposit, Vietnam
118 Nam Xe deposit, Vietnam
119 Sin Quyen deposit, Vietnam
120 Dong Pao deposit, Vietnam
121 Gifford Creek/Yangibana, Australia
122 *, Australia

123 Cummins Range, Australia
124 John Galt, Australia

125 Brockman, Australia

126 Boulder Ridge, Australia

127 Browns Range, Australia

128 Eneabba, Australia

129 Nolans, Australia

130 Brightlands Milo, Australia
131 Jangardup, Australia

132 **, Australia

133 ***, Australia

134 Mount Weld, Australia

135 Olympic Dam, Australia

136 WIM 150, Australia

137 Narraburra, Australia

138 Dubbo Zirconia, Australia
139 Fraser Island, Australia

140 North Stradbroke Island, Australia

** 132 Circle valley, Cascade, Mt Ridley, Lort River

Fig. 1. Known REEs mines and deposits globally. Deposits in black color are modified after (Deady, 2021); deposits in red color are from (Pham-Ngoc et al., 2016;

Spandler et al., 2020; Liu et al., 2023).



production after 2010 (Hayes-Labruto et al., 2013; Wiibbeke, 2013; Han
et al., 2015; Lei et al., 2017; Hu et al., 2023b). Consequently, many
countries have started exploring new REE deposits and expanding do-
mestic rare earth production. Additionally, efforts to recycle, conserve
REEs, and explore substitute materials have intensified in various
countries (Lei et al., 2017; Van Gosen et al., 2017; Ciacci et al., 2019;
Humphries, 2019; Mancheri et al., 2019).

The current geopolitical imbalance in REE production versus de-
mand is driving new research and development for more efficient or
novel methods of REE extraction, beneficiation, and separation/refining
for mineralized deposits. This review seeks to help facilitate this effort
by providing an overview of REE resource types, and their geographic
distribution. We first summarize the chemical characteristics of some
important REE-bearing minerals, also the classification of REE deposits.
Next, we examine the worldwide distribution of REE resources, high-
lighting well-known REE deposits with significant current and/or future
production potential. Finally, we conclude with some observations and
considerations for future development in this general area of research.

2. Classification of REE minerals and their crystal chemical
compositions

The total abundance of REEs in Earth’s crust is approximately 169.1
ppm, including ~137.8 ppm of light REEsand ~31.3 ppm of heavy REEs
(Rudnick and Gao, 2003). Among them, the most abundant REEs are Ce
(~63 ppm), La (~31 ppm), Nd (~27 ppm), and Y (~21 ppm), which
have average crustal abundances similar to some industrial metals, such
as chromium (~100 ppm), nickel (~84 ppm), copper (~60 ppm), zinc
(~70 ppm), cobalt (~25 ppm), lithium (20 ppm), and lead (~14 ppm)
(Fig. 2) (Dushyantha et al., 2020). Therefore, despite the label "rare" in
their name, they are not as scarce as the term implies. The word "rare"
primarily indicates that even in enriched deposits REEs tend not to occur
in compositionally pure mineral phases but rather as solid solution in
relatively low concentrations, often as substituents for major ions in
various compatible crystal structure types (Haxel et al., 2002).

REEs are found in a wide variety of mineral phases such as carbon-
ates, halides, phosphates, and oxides (Moller, 1986; Jordens et al., 2013;
Dushyantha et al., 2020). Currently, over 250 minerals have been
identified as containing REEs, however, only a few minerals are
commercially significant or have the potential to become so (Table 1)
(Jordens et al., 2013). Among these minerals, bastnasite, xenotime, and
monazite are the three main kinds that are associated with the majority
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Table 1
List of common REE-bearing mineral phases and their molecular formulas, and
typical values of their rare earth oxide (REO) contents.

minerals Formula Approximate REO
%
Aeschynite-(Ce) (Ce,Ca,Fe,Th) (Ti,Nb),(0,0H)e 32
Allanite-(Ce) (Ce,Ca,Y) (ALFe®)5(Si04);0H 38
Apatite (Ca,Ce)s(PO4)3(F,CI,OH) 19
Bastnasite-(Ce) (Ce,La) (CO3)F 75
Brannerite (U,Ca,Y,Ce) (Ti,Fe),0¢ 9
Britholite-(Ce) (Ce,Ca)s(Si04,P03)3(0OH,F) 32
Eudialyte Nay(Ca,Ce),(Fe?" ,Mn,Y)ZrSigO2,(OH, 9
CD2 (?)
Euxenite-(Y) (Y,Ca,Ce,U,Th) (Nb,Ta,Ti)20¢ 24
Fergusonite- (Ce,La,Nd)NbO4 53
(Ce)
Gadolinite-(Ce) (Ce,La,Nd,Y),Fe?*Be,Si,01¢ 60
Kainosite-(Y) Cay(Y,Ce)2Si40,2,C03-H0 38
Loparite (Ce,La,Na,Ca,Sr) (Ti,Nb)O3 30
Monazite-(Ce) (Ce,La,Nd,Th)PO,4 65
Parisite-(Ce) Ca(Ce,La)2(C0O3)3F2 61
Xenotime YPO4 61
Yttrocerite (Ca,Ce,Y,La)F3.nH,0 53
Huanghoite- BaCe(CO3)7F. 39
(Ce)
Cebaite-(Ce) BazCey(CO3)sF, 32
Florencite-(Ce) CeAl3(PO4)2(OH)e 32
Synchysite-(Ce) Ca(Ce,La) (CO3)-F 51
Samarskite-(Y)  (Y,Ce,U,Fe®")3(Nb,Ta,Ti)sO16 24
Knopite (Ca,Ti,Cez)03 NA

Note: Data from reference (Walter et al., 2010). NA means not available.

of REE resources (Jha et al., 2016; Meshram and Pandey, 2019).
Monazite and bastnasite serve as the primary sources of the LREEs,
predominantly containing Ce, La, and Nd. But some monazite exhibits a
slightly distinct composition with lower amounts of La and higher levels
of Nd and HREEs. It is worth noting that monazite also contains the
radioactive elements thorium (Th) and uranium (U) (Andreoli et al.,
1994; Hussain et al., 2020; Su et al., 2021; Dostal and Gerel, 2023). On
the other hand, xenotime is characterized by the HREEs (such as Y, Dy,
Er, Yb, and Ho) (Harben, 2002).

3. Major REE ore deposit types

REE ore deposits can generally be categorized into two main types:
primary deposits formed through hydrothermal and igneous processes

100000 -

10000 -

1000 A

100 A

10 4

1

Abundance, ppm

0.1 4

0.01 -

0.001 +

0.0001 T T T T

® Rareearthelements

Th

Te

0 10 20 30 40

50 60 70 80 20 100

Atomic number, Z

Fig. 2. Comparison of the abundance of various elements in the Earth’s crust (Yaroshevsky, 2006).



and secondary deposits resulting from weathering and sedimentary
processes (Walter et al., 2010). Here we follow a classification based on
their mineralogic associations and the geological processes from which
they have formed (Jaireth et al., 2014; Xie et al., 2019; Batapola et al.,
2020; Dushyantha et al., 2020). These categories include.

e Carbonatite-related deposits

e Deposits associated with alkaline igneous rocks
e Magmatic-hydrothermal deposits

e Residual weathering deposits

e Placers

o Offshore sedimentary deposits

e REEs in coals

Carbonatite-related deposits. According to the International Union
of Geological Sciences, carbonatites are defined as igneous rocks con-
sisting of over 50% by volume of primary carbonate mineral
(Streckeisen, 1980). They commonly occur in stable regions of the crust,
such as cratons, and often form carbonatite-alkaline complexes because
they are associated with alkaline silicate igneous rocks, or isolated in
various forms including stocks, sills, dikes, irregular-shaped masses
(Walter et al., 2010; Linnen et al., 2013; Wang et al., 2020). Carbonatites
vary in composition from calcic, dolomitic, to ferro-carbonate (sub-
divided into ankerite [Ca(Mg,Fe2+,Mn) (CO3)s] or siderite [FeCOs])
(Schulz et al., 2017; Simandl and Paradis, 2018; Pirajno and Yu, 2022).
There is currently considerable controversy regarding the formation of
carbonatites. Some believe that carbonatites derive from silica-poor but
carbon dioxide-rich magmas originating from the upper mantle, or from
carbonate-bearing alkaline silicate magmas through immiscibility or
fractionation (Rankin and Le Bas, 1974; Hamilton et al., 1979; Twyman
and Gittins, 1987; Wallace and Green, 1988; Kjarsgaard and Hamilton,
1989; Baker and Wyllie, 1990; Harmer and Gittins, 1998; Wyllie and
Lee, 1998; Veksler et al., 2006). Others argue that carbonatite magmas
can directly originate from low-degree partial melting of carbonated
mantle peridotite (Gittins, 1988; Woolley and Kjarsgaard, 2008) or
partial melting of subducted oceanic crust (Walter et al., 2008). How-
ever, Anenburg et al. propose that regardless of the origin of carbonates,
in order to enrich rare earth elements in carbonatite sources, especially
for the largest economic deposits, one or more crucial processes must
accompany the evolution of carbonatites. These include three main
stages: igneous fractionation (>600 °C), brine-melt stage (600-400 °C),
and hydrothermal fluid. While REE mineralization primarily occurs in
the latter two stages, igneous fractionation plays a crucial role in the
crystallization of REE-poor minerals in carbonatite melts, leading to the
enrichment of rare earth elements in the residual melt (Anenburg et al.,
2021). This intricate evolution process can also be inferred from flu-
id/melt inclusions in carbonatites, where the diversity of components
mirrors processes such as fractionation, fluid exsolution, and subsequent
fluid phase separation (immiscibility) (Walter et al., 2021).

Carbonatite-related REE deposits, such as Mountain Pass, USA, have
been the primary source of LREEs since the 1960s, attributed to the fact
that these deposits are usually enriched in LREEs (Van Gosen et al.,
2017). However, there are a few exceptional cases where carbonatite
deposits exhibit high enrichment in HREE, such as the Dashigou site in
China and the Bear Lodge site in the USA (Song et al., 2015; Andersen
etal., 2016, 2017; Smith et al., 2018; Cangelosi et al., 2020). This type of
deposit is usually enriched in LREEs due to the significant LREE/HREEs
fractionation in carbonatites (Xu et al., 2010). Multiple mechanisms
contribute to LREE enrichment in carbonatites, encompassing their
preferential incorporation into carbonatite melts within mantle sources
(Foley et al., 2009) or into carbonatite liquids during immiscibility
(Martin et al., 2013; Nabyl et al., 2020). Additionally, post-magmatic
geological processes such as hydrothermal activity can further
enhance the enrichment of LREEs or depletion of HREEs within carbo-
natite deposits (Broom-Fendley et al., 2017; Anenburg et al., 2020;
Beland and Williams-Jones, 2021). The main REE minerals associated

with carbonatites include bastnasite, monazite, xenotime, and parisite.
These minerals serve as the primary sources of REEs within carbonatite
deposits (Wang et al., 2020).

Deposits associated with alkaline igneous rocks. Generally
speaking, alkaline igneous rocks typically consist of amphiboles, alkali
pyroxenes, and feldspathoids. They are formed when the magma has an
excess of sodium and potassium content beyond what is required for
feldspar formation, leading to the formation of feldspathoids. Alkaline
igneous rocks exhibit a broad range of compositions, ranging from ul-
tramafic to felsic (Dostal, 2017). In some cases, alkaline rocks may be
referred to as peralkaline if their molar proportion of potassium plus
sodium is higher than aluminum (Spandler and Morris, 2016; Dostal,
2017). Peralkaline rocks are characterized by their significant enrich-
ment both in high-field strength elements (HFSEs, including titanium
(Ti), zirconium (Zr), niobium (Nb), and REEs) and alkali metals (Dostal,
2017), and can be divided into two groups of agpaitic and miaskitic
rocks. In the miaskitic rocks, REEs and HFSEs are predominantly hosted
by minerals like zircon and titanite while the agpaitic rocks are featured
by Na-Ca-HFSE minerals with structurally incorporated halogens (Beard
et al., 2023). The main evidence suggests that (per)alkaline rocks form
though extensive fractional crystallization of alkaline basaltic magmas,
which originate from partial melting of mantle sources (Pilet et al.,
2008). However, some researchers have proposed that the formation of
peralkaline melts is often accompanied by metasomatic pre-enrichment
of halogens, HFSEs, REEs, and other rare and incompatible elements in
mantle sources. This process results in the unique enrichment of these
elements observed in the subsequently produced peralkaline rocks
(Upton et al., 2003; Marks and Markl, 2017). The mineralization of REEs
in alkaline igneous rocks commonly takes place during the late stages of
magma evolution, and typically hosted by nepheline syenites, peralka-
line granites (such as pegmatites, felsic dikes), and peralkaline felsic
volcanic rocks (such as trachytes) (Beard et al., 2023). The dominant
alkaline igneous rocks related REE mineralization includes bastnasite,
loparite, eudialyte, xenotime, gittinsite, zircon, monazite, and fergu-
sonite (Chakhmouradian and Zaitsev, 2012; Dostal, 2017). Peralkaline
rocks related REE deposits generally exhibit comparatively low-grade
mineralization, but are usually enriched in HREE (Castor and Hedrick,
2006; Spandler and Morris, 2016).

Magmatic-hydrothermal deposit. Some REE deposits are not
obviously associated with carbonatites or alkaline igneous rocks. The
iron oxide-copper-gold (IOCG) deposits are one of the most significant
type of this group (Groves et al., 2010; Slack et al., 2016). The renowned
Olympic Dam deposit in South Australia represents the first discovery of
this deposit type (Roberts and Hudson, 1983; Tappert et al., 2013). The
occurrence of REE minerals varies in different IOCG deposits, the main
REE phases are allanite, carbonates and monazite, apatite and/or fluo-
rite (Skirrow, 2022). Additionally, some magmatic hematite-magnetite
bodies can concentrate economically valuable REE-bearing mineral,
such as apatite. An example of this is the Pea Ridge Fe Oxide-REE De-
posit (southeast Missouri, USA) (Sidder et al., 1993; Harlov et al., 2016).
These deposits, primarily characterized by the presence of iron oxide
ores, are alternatively referred to as iron oxide-apatite bodies (Reich
et al., 2022; Yan and Liu, 2022). Besides, high REE concentrations are
also discovered in vein and skarn systems where bastnaesite and
monazite emerge as the primary REE mineral phases (Holtstam et al.,
2014; Goodenough et al., 2018). An example of this is the Bastnas-type
Fe-REE-(Cu-Mo-Bi-Au) deposits in Bergslagen, Sweden (Holtstam et al.,
2014). Occasionally, REE mineralization may be hosted within sedi-
mentary rocks or mafic gneiss; however, REEs are typically concentrated
through magmatic-hydrothermal processes or derived from hydrother-
mal fluids. An illustrative case is the accumulation of xenotime in the
Music Valley area of southern California, USA, found within the Prob-
able Precambrian-aged Pinto Gneiss (McKinney et al., 2015). Another
example is the occurrence of REE-F-Ba mineralization hosted by the
Cedared and Burnais formations in Rock Canyon Creek, British
Columbia, Canada (Green et al., 2017; Simandl et al., 2021).



Residual weathering deposits. Laterites are residual accumula-
tions formed in situ through continuous tropical weathering processes,
that results in the disintegration of primary rock-forming minerals.
Subsequently, some labile elements (such as sodium, magnesium and
calcium) leach out, leaving behind those relatively immobile elements
(such as aluminum and iron) in place. Hence, if the parent rocks, like
carbonatites and granites, are enriched in REEs, then economic deposits
of REEs may form after weathering (de Oliveira and Imbernon, 1998;
Witt et al., 2019; Zhukova et al., 2021). For example, laterite regolithes
weathered from carbonatites typically exhibit high-grade mineraliza-
tion, with REO contents ranging from 10% to 25% (Walter et al., 2010).
One notable case is the Mount Weld REE deposit in Western Australia,
which consists of a fully weathered thick laterite layer overlying the
Proterozoic carbonatite (Zhukova et al., 2021). Although the primary
carbonatite contains only 0.1-0.2% REO, the extreme enrichment at
Mount Weld reaches 18.0% REO (Castor and Hedrick, 2006; Green et al.,
2017). Ion-adsorption deposits (IADs), another type of residual weath-
ering deposit, viz. residual deposits of REE-bearing clays, are a specific
type of REE deposits where REEs adsorption happens on clay mineral
surfaces in the weathering profile of certain rocks (Yang et al., 2013;
Moldoveanu and Papangelakis, 2016; Estrade et al., 2019). The majority
of these deposits have been exploited throughout southern China, and
are hosted within the weathered REE-enriched granites’ profiles, such as
provinces of Hunan, Jiangxi, Fujian, and Guangdong (Kanazawa and
Kamitani, 2006; Yang et al., 2013). Also, They have the potential to be
found globally. In 2020, a major new clay hosted ionic REE deposit has
been discovered at Mt Clere, Australia (Krakatoa, 2020). and some IADs
have been discovered in SE Asia and Japan (Li et al., 2017; Yamaguchi
et al., 2018). These clay minerals mainly consist of kaolinite, followed
by varying amounts of illite, halloysite, montmorillonite, vermiculite,
and chlorite (Huang et al., 2021b; Zhu et al., 2022b). Meanwhile, Fe-Mn
oxides sometimes play critical roles in the enrichment of REE, especially
for the element Ce, in a relatively oxidized environment, Ce undergoes
conversion from Ce>* to Ce*", thereby forming precipitates within
Fe-Mn oxides or Ce-bearing minerals. This process leads to an enrich-
ment of Ce in the weathered surface horizon (Bao and Zhao, 2008; Zhu
et al., 2022a).

Placers. These deposits are sedimentary accumulations of durable,
heavy minerals, along with sand and gravel, that are transported and
deposited by coastal activities and/or river currents (Komar, 2007;
Amalan et al.,, 2018). These detrital materials usually come from
high-grade metamorphic or granitic rocks, because these parent rocks
often contain enriched minerals of Ti, Zr, and REEs. Currently, more
than 360 REE-enriched placer deposits have been identified (Orris and
Grauch, 2002). However, the most economically significant placer de-
posits typically have marine origins, found on or near the current
shorelines (Cronan, 1999). An example of such marine placer deposits
with elevated levels of REE minerals occur along the Australian coast
(Cronan, 1999). The primary REE-bearing minerals found in these de-
posits are monazite, with occasional xenotime, euxenite, fergusonite,
allanite, samarskite, knopite, pyrochlore, and loparite (Moller, 1986).
However, monazite is commonly derived from granites, leading to a
relatively high thorium (Th) content, posing a significant challenge
during processing.

Offshore sedimentary deposits. Phosphate rocks have the potential
to serve as a substantial resource for REE, given their widespread pro-
duction globally and high REEs contents (Pufahl and Groat, 2017; Wu
et al., 2018; Rout et al., 2023). Currently, the proven marine sedimen-
tary phosphorites account for the majority of global phosphate re-
sources, approximately 95% of the total (Pufahl and Groat, 2017; Wang
et al., 2023c). Wherein the marine sedimentary phosphate deposits are
mainly composed of carbonate fluorapatite. REEs have ion radii similar
to Ca®* (Auer et al., 2017), and therefore, they preferentially replace Ca
in the crystal lattice of phosphate minerals, leading to the widespread
presence of significant amounts of REEs in phosphate ores. At present,
some potential REE-enriched sedimentary phosphate deposits have been

found in Australia (Emsbo et al., 2015; Valetich et al., 2022), USA
(Emsbo et al., 2015), Venezuela (Linares et al., 2023), Northern Africa
(Tunisia, Algeria) (Buccione et al., 2021), and Northwestern Saudi
Arabia (Ahmed et al., 2022). Moreover, studies have indicated that Mn
nodules and Fe-Mn crusts discovered in the Pacific Ocean’s deep-sea
regions have high levels of HREEs, that can be recognized as REE de-
posits (Huang and Fu, 2023).

REEs in coals. In recent years, REEs in coal have attracted wide-
spread attention due to their stable geochemical characteristics and
potential economic value. However, the REE concentrations in coal
seams are typically not significantly higher than those found in normal
sedimentary rocks. The significance of these resources lies in the large
tonnage of rock rather than in exceptionally high concentrations of REE.
According to statistics, the average abundance of REEs in coal world-
wide was estimated to be 68 pg/g (Ketris and Yudovich, 2009). China’s
coal has rare earth content at 138 pg/g (Dai et al., 2008), approximately
twice the global average. Other countries and regions, such as Turkey,
North Korea, and the United States, have contents of 116, 77, and 62
ug/g, respectively (Finkelman, 1993; Zhang et al., 2015). However, the
average REEs content in coal ash worldwide is 403.5 pg/g (Ketris and
Yudovich, 2009), while in USA, the average REE content in coal ash is
approximately 513 pg/g (Finkelman, 1993). This indicates that during
the combustion process of coal, REEs are primarily enriched in the
combustion products, with this enrichment being closely related to the
coal compositions, combustion methods and characteristics of the ash.
Higher temperatures can lead to the evaporation of more volatile ele-
ments, while a longer residence time of fly ash allows for greater ab-
sorption of REEs from the gas phase (Wu et al., 2022). The criterion set
by the US Department of Energy for assessing raw coal as REEs resources
specifies that the total REEs content should exceed 300 pg/g on a dry
coal basis (Fu et al., 2022). Therefore, in the research report on rare
earth elements published by the U.S. Department of Energy in 2017, it
explicitly emphasizes that coal and its combustion products in USA can
serve as potential sources of REEs (Conrad, 2017). Currently,
REEs-enriched coals are primarily distributed in China (Dai et al., 2016;
Yin and Song, 2022), Russia (Seredin, 1996; Seredin and Dai, 2012),
USA (Taggart et al., 2016; Lin et al., 2018; Bagdonas et al., 2022). Ac-
cording to previous research, the genesis of REEs in coals can be clas-
sified into four types: terrigenous, tuffaceous, infiltrational or meteoric
groundwater-driven, and hydrothermal types (Seredin and Dai, 2012).
Furthermore, existing research indicates that REEs in coal exist in the
forms of rare earth minerals, organic compounds, and ion adsorption
(Jordens et al., 2013; Zhang et al., 2017; Finkelman et al., 2018).

4. The global distribution of REE deposits and some major
deposits

REE deposits have been identified in over 34 countries, with a total
estimated 130 million metric tons of global REEs reserves based on REO
content (Table 2). The leading countries in terms of reserves are China
(~33.8%), Vietnam (~16.9%), Brazil (~16.2%), Russia (~16.2%),
India (~5.3%), Australia (~3.2%), and the USA (~1.8%) (U.S.G.S.,
2023). Since the late 1990s, China has been dominating the REE market,
both in the supply of raw ores and processed/purified products, ac-
counting for over 90% of global production from the 2000s to the early
2010s (Drobniak and Mastalerz, 2022). However, in recent years, due to
adjustments in the international REE market, there has been an increase
in REO production outside of China. As shown in Table 2, China’s
contribution has now fallen to the range of 55%-70% of global pro-
duction (U.S. Geological Survey, 2021, 2023), while the production in
the United States, Vietnam, and Thailand is increasing year by year.

4.1. China

China’s REE deposits are distributed mainly in Inner Mongolia,
Sichuan, Fujian, Guangdong, Hunan, Jiangxi, Shandong, and Yunnan



Table 2

Worldwide reserves of REEs (REO basis) in 2022 and global REE production
from 2019 to 2022 (unit: metric tons, data from references (U.S. Geological
Survey, 2021, 2023)).

Reserves Mine Production

2019 2020 2021 2022
China 44000000 132000 140000 168000 210000
Vietnam 22000000 1300 1000 400 4300
Brazil 21000000 710 1000 500 80
Russia 21000000 2700 2700 2600 2600
India 6900000 2900 3000 2900 2900
Australia 4200000 20000 17000 24000 18000
United States 2300000 28000 38000 42000 43000
Greenland 1500000 - - - -
Tanzania 890000 - - - -
Canada 830000 - - - -
South Africa 790000 - - - -
Myanmar NA 25000 30000 35000 12000
Burundi NA 200 500 200 -
Madagascar NA 4000 8000 6800 960
Thailand NA 1900 2000 8200 7100
Other countries 280000 66 100 60 80
total 130000000 220000 240000 290000 300000

Note: NA, not available. — Zero.

(Wiibbeke, 2013; Lei et al., 2017; Wang et al., 2018). Among these de-
posits, the most economically significant are the carbonatite-related REE
deposits, notably the Bayan Obo deposit, recognized as the largest REE
deposit in the world (Li et al., 2022; Wei et al., 2022), and the Mao-
niuping deposit, which is China’s second-largest REE resource (Weng
et al.,, 2022a, 2022b). Additionally, there are numerous REE-bearing
ion-adsorption clay deposits located in the southeastern provinces of
China (Ou et al., 2022; Zhao et al., 2022), and also some alkaline-related
REE deposits, such as Weishan deposit (Zhao et al., 2023). China began
REO production in the 1980s, and had emerged as the dominant pro-
ducer in the global market by the mid-1990s (Drobniak and Mastalerz,
2022). In the early 2000s, the Chinese government introduced export
quotas for REEs, which were significantly reduced since 2010 (Lee and
Dacass, 2022).

4.1.1. Carbonatite-related REE deposits

China has identified over 20 carbonatite-related REE deposits or
sites, including the giant Bayan Obo and Maoniuping deposits, as well as
the large Dalucao and Miaoya deposits. Additionally, there are several
medium to small REE deposits and mineralized sites (Xie et al., 2020).
These carbonatite-related REE deposits typically exhibit enrichment in
LREEs, while a minority of locations, such as Dashigou, demonstrate
higher enrichment in HREEs. The HREE-enriched minerals in these de-
posits are predominantly fluorcarbonates, with secondary REE miner-
alization occurring through the replacement of primary magmatic
monazite-(Ce) by minerals like xenotime-(Y) and churchite-(Y) (Smith
et al., 2018; Cangelosi et al., 2020).

Bayan Obo deposit. The Bayan Obo Fe-REE-Nb deposit is situated in
the northwest region of Baotou in Inner Mongolia Autonomous Province
(Kanazawa and Kamitani, 2006). It is hosted within the Bayan Obo
group, which consists of nine Paleo-Mesoproterozoic sedimentary units,
termed as H1 to H9 in ascending stratigraphic order, but the division of
H8 lithology is controversial (Tang et al., 2021). These units primarily
comprise slates and meta-sandstones, but H8 is predominantly
composed of dolomitic marbles, Featuring both fine- and coarse-grained
forms. The H8 unit forms a spindle-shaped stratiform body extending
from east to west, measuring over 18 km in length and more than 1 km in
width. It serves as the primary host rock for the majority of the ores
(Chao et al., 1992; Yang et al., 2009, 2011a). Within the deposit, car-
bonatite dikes in different types are widely distributed (Yuan et al.,
1995; Yang et al., 2011b). The genesis of this deposit remains a topic of
debate due to the complex ore-forming process, primarily attributed to

extensive and intense hydrothermal alterations and transformations
during the late stages of mineralization and metamorphism (Yang et al.,
2009, 2017; Lai et al., 2015; Smith et al., 2015; She et al., 2021).
Fig. 3a—d illustrates one possible model for the genesis of this deposit.
The evolution of carbonatite involves distinct stages: a magmatic phase
featuring Mg-Fe-carbonatite (original ore-hosting dolomite), a carbo-
thermal stage driven by Ca-carbonatitic fluids, and a hydrothermal stage
with significant fluorite deposition and alkali alteration. After that,
intense geological tectonic movement has led to local modification and
REE-Nb enrichment. The complex multi-stage REEs mineralization pri-
marily results from metasomatism where fluids derived from
Ca-carbonatite interact with slightly preceding Mg-Fe-carbonatite in-
trusions. Moreover, it should be noted that while the Mg-Fe-carbonatite
magma exhibited enrichment in REEs, the substantial contribution to
the eventual REEs enrichment in the ore-hosting dolomite, forming the
mined orebodies, came from post-magmatic fluids associated with
Ca-carbonatite (Liu et al., 2020). The main REE-bearing minerals found
in the Bayan Obo deposit include bastnaesite-(Ce) and monazite-(Ce),
along with various other REE and Nb minerals such as huanghoite,
aeschynite-(Ce), felgusonite, and columbite (Fan et al., 2016). The de-
posit contains approximately 800 Mt of REE reserves with an average
grade of 6% total REQO. Additionally, it is estimated to hold 2.2 Mt of Nb
reserves with an average grade of 0.13% NbyOs, as well as at least 1500
Mt of total Fe reserves with an average grade of 35% (Fan et al., 2014).
The deposit is particularly rich in LREEs, which account for up to 97% of
the total REEs present (Su, 2009; Yang et al., 2013).

Maoniuping deposit. This deposit is situated in the western region
of the Yangtze Plate and the eastern region of the Tibetan Plateau,
controlled by the Panxi rift (Liu et al., 2015; Wang et al., 2020). Host
rocks are composed of Devonian-Permian argillaceous clastic sediments,
limestones, and Tertiary talus. Igneous rocks in the area consist of
Yanshanian granite, an alkaline syenite-carbonatite complex, and
Mesozoic rhyolite, which are widely distributed across the deposit. REE
mineralization happens within a vein system, primarily consisting of
pegmatitic veins of barite and calcite, as well as line veins found within
the Maoniuping northeast-trending syenite-carbonatite complex. This
complex extends approximately 1400 m in length and has a width
ranging from 260 to 350 m (Yuan et al., 1995). A study of fluid in-
clusions has been conducted to investigate the origin of this deposit, as
illustrated in Fig. 3e. The evidence suggests that the ore-forming fluids
originated from carbonatite-syenite complexes. Fenitization happened
during the hydrothermal stage I, followed by the appearance of
immiscible fluids in hydrothermal stage II. The final stage witnessed the
occurrence of rare earth mineralization (Zheng and Liu, 2019). How-
ever, a recent study proposes that shallow-seated, sustained
mantle-derived magma underintrusion coupled with stable regional
thermal anomalies contributed to the favorable conditions for REE for-
mation (Weng et al., 2022a). The principal REE-bearing mineral in this
deposit is bastnasite-(Ce), accompanied by minor amounts of par-
isite-(Ce) and monazite-(Ce). The estimated REE reserves are typically
enriched in LREEs (Yuan et al., 1995; Zheng and Liu, 2019). Other
associated reserves include 3.78 Mt of barite, 0.33 Mt of Pb, 2.40 Mt of
fluorite, and 174 tons of Ag (Xu et al., 2012).

4.1.2. Ion-adsorption clay deposits

In Southern China, another typical REE deposit are found as
weathered-crust elution deposits and termed “ion adsorption deposits
(IADs)”. These deposits usually contain high value of LREE (Huang et al.,
2021a; Wang et al., 2023b), with a minority being rich in HREE content
(such as Gd-Lu) (Kynicky et al., 2012; Moldoveanu and Papangelakis,
20165 Xie et al., 2020). The variations in compositions within IADs are
primarily influenced by the diverse chemical compositions of the parent
rocks (Chu et al., 2024). These deposits form under relatively stable
tectonic geological conditions (low uplift and low erosion rates) and are
restricted to certain areas of Southern China (Takeda and Okabe, 2014).
The formation of ion adsorption REE deposits occurs through the process
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of weathering and leaching of parent rocks (particularly granite,
gneisses, and granite porphyry) by water in warm and high-humidity
near surface environments. During migration, the dissolved REE ions
are adsorbed by clay minerals (Van Gosen et al., 2014; Estrade et al.,
2019). Microbes can also act a positive effect in the mobilization and
fractionation of REEs during weathering (He et al., 2023). The weath-
ered zone is rich in REEs, with a thickness typically ranging from 3 to 10
m. Based on the mineralogy, it can be divided into four layers (Bao and
Zhao, 2008): an upper soil layer (0-2 m); a fully weathered horizon
(5-10 m) that constitutes the main REEs orebody with general REE

Exposed bedrock arcas

Residual weathring area
&——Residual weathering area ———>&Alluvial area—»&— I

concentrations of 0.03-0.15% (Yang et al., 2013), a semi-weathered
parent rock horizon (3-5 m); and a parent rock horizon or weakly
weathered layer, a typically case is shown in Fig. 4. The advantage of
this type deposit is that the adsorbed REEs can be easily extracted from
the clay through ion exchange (Wall, 2014; Deng et al., 2019). Hence,
despite the relatively small scale, and low REE concentrations of these
deposit, it is still economically feasible to extract REEs from these clay
deposits. According to the data, ion-adsorption clay deposits only ac-
count for 2.9% of China’s total REE reserves, but they have contributed
to 26% of China’s total REE production from 1988 to 2008 and up to
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35% since 2009 (Su, 2009). Recently, Wang et al. reported a new
technique, viz. electrokinetic mining for the selective recovery of REEs
from ion-adsorption clay deposits in a more environmentally friendly
and efficient manner (Wang et al., 2023a). In contrast to conventional
techniques, the new method attains ~2.6 times higher recovery effi-
ciency, reduces leaching agent usage by around 80%, and diminishes
metallic impurities in the obtained REEs by approximately 70%.

4.2. Vietham

The earliest REE deposits discovered in Vietnam were the Nam Xe
and Dong Pao REEs deposits in the northwest province of Lai Chau. After
1990, four other major REE deposits were discovered: Sin Quyen in Lao
Cai province, Yen Phu in Yen Bai province, Then Chau in Lai Chau
province, and Muong Hum in Lao Cai province (Moody, 2013). Fig. 5
shows the distribution of REE deposits in the northwest part of Vietnam.
Despite having the second-largest REE reserves, Vietnam produced only
4300 tons in 2022, accounting for 1.5% of the global total production for
that year (Table 2).

4.2.1. Carbonatite-related REE deposits and their weathered residuum
Nam Xe carbonatites, located in the northwestern region of Vietnam,
the only reported occurrence of carbonatite in Vietnam, are found in the
intracontinental rift-Song Da zone (Nguyen Thi et al., 2014). Two main
types have been identified: ferrocarbonatite and calciocarbonatite. The
origin and formation of the Nam Xe carbonatites have been a subject of
debate for years. Some previous studies suggested that ferrocarbonatites
have hydrothermal/metasomatic origins, while calciocarbonatites are of
igneous origin (Ila et al., 1961; Thanh et al., 2002; Chi et al., 2008;
Nguyen Thi et al., 2014). Others have proposed that the carbonatites
originated from the high-K subvolcanic intrusions of the Pu Sam Cap
complex and have strong associations with Paleogene lamprophyres and
lamproites in the region (Huong, 1994; Chi, 2003; Chi et al., 2008). Thi

et al. reported a crystallization age of 30.2-31.6 Ma for the ferro-
carbonatite based on U-Th-Pb isochrons (Nguyen Thi et al., 2014).

Nam Xe REEs deposit. This deposit is located on both sides of the
Nam Xe River valley and divided by the east-west striking Ban Pan-
Phong Tho fault into a northern and a southern part (Mockel et al.,
2019). The southern deposit comprises carbonatitic dyke-like structures
in the host rocks of Triassic trachyandesite and Permian limestone,
where the northern deposit is a deeply weathered residual with a
thickness up to 40 m, laying on top of Permian limestone (Phan et al.,
2019). In the northern deposit, the weathered profile has a total REOs
head grade of 4-5 wt% while the primary ores in the southern deposit
show an average content of total REOs about 1.4 wt% (Cardenas-Vera
et al., 2022). The Nam Xe orebodies are exceptionally rich in HREEs,
especially Y, Eu, and Gd, and REEs associated minerals are parisite,
bastnaesite, gadolinite, apatite (Moody, 2013).

4.2.2. Alkaline granitic rocks and their weathered residuum

Alkaline granitic rocks are widely distributed in the Tu Le basin and
Phan Si Pan (PSP) Uplift area in Northwestern Vietnam. These areas lie
along the boundary between the Archean-Proterozoic South China Block
and the accreted Gondwanan terranes of Southeast Asia. The northern
part of this region is known as the Ailaoshan-Red River shear zone, while
the southern area is defined by the Song Ma suture (Fig. 5) (Pham et al.,
2020). The PSP uplift primarily consists of alkaline and sub-alkaline
Phanerozoic granitoids found in the areas of the Phu Sa Phin, Muong
Hum, Ye Yen Sun, and Phan Si Pan. Besides, Archean metagranitoids of
the Ca Vinh complex, as well as Paleoproterozoic Xom Giau and Neo-
proterozoic Po Sen granitoid complexes are also developed in this region
(Usuki et al., 2015). In contrast, the Tu Le basin is composed of rhyolite
and trachyte of Jurassic to Cretaceous age (Luong, 1988; Anh et al.,
2004). Related REE deposits are located in Dong Pao, Muong Hum, Yen
Phu, and Then Chan. The Dong Pao REEs deposit is famous for its
ion-adsorption clay deposits (Tao et al., 2022).
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4.2.3. Iron oxide-copper-gold deposit

The well-known deposit of this type is the Sin Quyen IOCG-REE
deposit, considered one of the largest IOCG deposits in the north of
Vietnam (Lao Cai province) (Li and Zhou, 2018). It is situated in the
Phan SiPan uplift, in close proximity to the Red River shear zone (Duong
et al.,, 2021). The ore body primarily occurs within the Proterozoic
metamorphic and sedimentary rocks of the Sin Quyen formation,
particularly in contact with granite-gneiss and amphibolites (Ta, 1975).
Recent studies (Ngo et al., 2020; Duong et al., 2021) have reported two
stages of mineralization at approximately 880 Ma and 840 Ma, respec-
tively. The first mineralization stage lead to the REE-rich allanite for-
mation, whereas the main IOCG ores were formed during the second
mineralization stage, leading to extensive alteration of the primary
allanite, see Fig. 6a and b. A zipper tectonic model has been proposed to
explain the mineralization process (Fig. 6¢). In this model, the clockwise
rotation of the Indochina block led to the emergence of three distinct
tectonic stress regimes: one characterized by a compressive regime,
another by a pure strike-slip regime, and the remaining one by an
extensional regime. The Sin Quyen IOCG deposits are situated withinthe
Red River shear zone of the pure strike-slip zone (Duong et al., 2021).
The REE-bearing minerals are enriched in LREEs such as La, Ce, Pr and
Nd, including bastnasite-(Ce), monazite-(Ce), allanite-(Ce), chevkini-
te-(Ce), columbite-(Fe), aeschynite-(Ce), and ilmenite (Li and Zhou,
2017; Pieczonka et al., 2019). The proven reserves of the Sin Quyen
deposit amount to 52.8 Mt of ore, containing 0.7% LREE (La, Ce, and
Nd), as well as 14% Fe, 0.91% Cu, and 0.44 g/t Au (McLean, 2002).

4.3. Brazil

REE deposits in Brazil are associated with various geological features
such as carbonatites, alkaline granitic rocks, residual weathering, and
marine placers. Brazil possesses the world’s third largest REE resource;
however, the production of REEs in 2022 was only 80 tons (Table 2).
This limited production could be attributed to the relatively smaller size
of the deposits and the mining techniques employed. Currently, three
primary REE projects are in progress: the Araxa project in Arax4 alkaline
carbonatite, Minas Gerais State; the Serra Verde Project (an IAD) in the
Serra Dourada biotite granite, Goias State; and the Pitinga Project in the
Madeira alkali granite, Amazonas State (Takehara et al., 2016).

4.3.1. Carbonatite-related REE deposits and their weathered residuals
The alkaline-carbonatite complexes are mainly distributed in the

margins of the Amazonas, Parand, and Paranaiba basins and are asso-

ciated with fracture zones (Dardenne and Schobbenhaus, 2001; Biondi,

880Ma|REE mineralization stage

840Ma|REE-Fe-Cu mineralization stage|

2003). These complexes typically exhibit circular structures and form
radial drainage patterns (Biondi, 2003). Extensive tropical weathering
has resulted in the development of thick weathering profiles, reaching
depths of over 250 m. Monazite, apatite, zircon, pyrochlore, and calcite
are the primary minerals associated with REE mineralization, while in
the residual weathered material, monazite becomes the dominant
REE-bearing mineral, accompanied by minor secondary apatite and
aluminum phosphates (Morteani and Preinfalk, 1996; de Oliveira and
Imbernon, 1998; Takehara et al., 2016).

Araxa REE deposit. The Araxa REE deposit consists of deeply
weathered residual overlaying the Barrairo do Araxa carbonatite com-
plex, with REEs mainly occurring within monazite and goyazite. The
Araxa carbonatite circular intrusion is located in the Barreiro area, with
a diameter of roughly 4.5 km, and around 16 km? in area (Traversa et al.,
2001). Evidence suggests that the Araxa carbonatite has been there since
the late Precambrian, while significant amounts of magma types and
igneous forms were intruded during the Mesozoic era (Traversa et al.,
2001). Additionally, studies by Gibson et al. indicate that the alkaline
magmatism in this region happened between 80 and 90 million years
ago (Gibson et al., 1995). In carbonatite rocks, REE mineralization is
primarily found in minerals like apatite, pyrochlore, zircon, monazite,
and calcite (Morteani and Preinfalk, 1996), whereas in the residual
weathered material, monazite, aluminum phosphates, and secondary
apatite are the main REE-bearing minerals (Morteani and Preinfalk,
1996; de Oliveira and Imbernon, 1998; Toledo, 1999).

4.3.2. Alkaline granitic rocks and their weathered residuals

Alkaline granitic rocks related REE-bearing deposits are the second
primary source in Brazil, and are enriched in HREEs. These deposits are
typically found within multiphase anorogenic granite complexes. Dur-
ing the later stages of magma fractional crystallization, incompatible
elements, including REEs, become highly enriched (Hannah and Stein,
1990). In the case of alkaline granitic deposits, in contrast to carbonatite
deposits, HREEs tend to concentrate in the lower part of the weathered
residuals, forming ion-adsorption clay deposits. HREEs are mainly
associated with minerals such as xenotime, fergusonite, samarskite, and
gagarinite. One renowned deposit of this type is the Pitinga deposit
(Pollard, 1995; Wu et al., 1995; Long et al., 2012).

4.3.3. Placers

Placer deposits in Brazil are known for heavy minerals including
ilmenite, zircon, rutile, and monazite, especially monazite (Moller,
1986; Dardenne and Schobbenhaus, 2001; Pires and Miano, 2014).
These heavy minerals are the weathered products of continental igneous
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rocks which formed during orogenic events, and mainly concentrated in
the Tertiary-aged units, for example, a lot of shoreline deposits are
hosted in the Barreira group (Sengupta and Van Gosen, 2016; Takehara
et al., 2016). REEs that occur within these heavy minerals are scattered
along the Brazilian coast, ranging from Pard to Rio Grande do Sul
(Cavalcanti, 2011). Placer deposits were historically the first deposits
that were mined for REEs in Brazil and were critical resources until the
mid-1960s (Serra, 2011).

4.4. Australia, India, USA, and other countries

These countries possess numerous medium to small REE deposits;
however, the individual REE reserves of each country do not exceed 3 wt
% of the global total (Table 2). Australia’s rare earth mines are primarily
extracted from placers, carbonatites and their weathering residuals, and
IOCG (Mudd, 2008; Jaireth et al., 2014; Subasinghe et al., 2022).
Additionally, Australia used to be the world’s largest monazite supplier
because of the widespread distribution of heavy mineral sand placer
deposits containing REE minerals along its coastline. This dominance
continued from the early years up to the mid-1990s (Mudd, 2008;
Jaireth et al., 2014; Subasinghe et al., 2022). Today, Mount Weld is
Australia’s leading rare earth ore producing area (Zhukova et al., 2021).
The main sources of REE deposits in India are predominantly carbo-
natites and placers (Krishnamurthy, 2020; Verplanck, 2020). A notable
potential for REE resources in beach placers has been identified along
the southern coast of Odisha, India, stretching from Garampeta to
Markandi beach (Ghosal et al., 2020). While carbonatites constitute the
major REE deposits in the USA, there are also small amounts of hydro-
thermal REE deposits, placers, and alkaline igneous rocks associated
deposits. Also, there have been proposals suggesting marine phospho-
rites and coals as potential sources of REE (Castor, 2008; Long et al.,
2012). Currently, carbonatite-related REE are mined in the USA from
Mountain Pass, but REEs are also produced as a byproduct of mining Ti
and Zr in beach placers (Bailey, 2021), such as Georgia coastal region
(Oladeni, 2022). Studies have also indicated a high concentration of REE
in the mined kaolin ore, kaolin mine tailings, and the kaolin-associated
sands, resulting from the weathering of granitic parent rocks in the
upper coastal plain of central Georgia (Cheshire et al., 2018; Boxleiter
and Elliott, 2023). In regions of the Russian Far East, coal deposits have
high concentrations of REEs (ranging from 300 to 1000 ppm) (Seredin,
1996). Furthermore, some European countries are formulating strate-
gies to extract REEs as by-products of phosphate mining, particularly
from apatite. Recent reports have indicated the sub-economic potential
of REE resources in iron ore deposits, such as the Per Geijer deposit
(Sweden), in association with phosphate mining, this deposit is the
biggest reported REE deposit in Europe (Decrée et al., 2023). There are
numerous reviews examining the REE resources in other various coun-
tries or districts, including Africa (Harmer and Nex, 2016; Buccione
et al., 2021), Greenland (Thrane et al., 2014), Europe (Charles et al.,
2013; Decrée et al., 2023), Russia (Kalashnikov et al., 2016), Sri Lanka
(Batapola et al., 2020), the Democratic Republic of Congo (Kasay et al.,
2022), Philippines (Gibaga et al., 2022), and Mongolia (Dostal and
Gerel, 2023). Some notable REE deposits are summarized below.

Mount Weld REE deposit, Australia. This deposit is close to Lav-
erton, Western Australia, about 35 km to the southeast. and represents a
weathering residual associated with carbonatites, with a thickness of up
to 90 m (Willett et al., 1986). The carbonatite is situated within the
Laverton Tectonic Zone and is surrounded by late Archean
volcanic-sedimentary sequences (Henson et al., 2010). The primary
carbonatite complex is dominated by coarse calcite-carbonatite, with
small amounts of dolomite- and ferro-carbonatite, as well as phoscorite.
A glimmerite alteration zone, approximately 0.5 km wide, developed
around the central deposit. Studies indicate that this carbonatite com-
plex formed around 2025 Ma (Nelson et al., 1988; Graham et al., 2004;
Czarnota et al., 2010). The weathering of the carbonatite has resulted in
the decomposition of primary carbonatite, leading to the formation of

apatite-rich residual zones (Lottermoser, 1990). This process has
contributed to Mount Weld being one of the highest-grade REE deposits
globally, with 23.8 million tonnes of ore grading at 7.9%. Additionally,
minor amounts of Nb, Ta, and P,Os, are present as by-products. REEs are
found in various minerals, including monazite, churchite,
plumbogummite-group minerals, and rhabdophane (Lottermoser,
1990).

Mountain Pass REE deposit, USA. This deposit is located in the
central Mojave Desert of California, USA, and is known for owning the
world’s second largest REE deposit. The REEs are enriched in the Sul-
phide Queen Carbonatite, a special carbonatite that differs from others
in the world. Unlike most carbonatites that are associated with alkaline
rocks, this carbonatite is associated to the ultrapotassic alkaline rocks,
by intruding into the latter as a tabular intrusion (Castor, 2008). How-
ever, the Th-Pb dates of monazite indicate this carbonatite has an age of
1375 + 7 Ma, younger than that of the ultrapotassic rocks (1400 + 7
Ma) (DeWitt et al., 1987). Studies have suggested that the carbonatite
magma shares a common origin with the ultrapotassic rocks, likely
derived from mantle sources enriched through metasomatism or
contamination by subducted crustal rocks (Castor, 2008). But the origin
of the carbonatite in the Mountain Pass deposit still remains highly
controversial (Haxel, 2005; Poletti et al., 2016). For example, carbo-
natites are surrounded by a fenitisation alteration zone, or existed
fluorite veins suggesting a hypothesis of alkali metasomatism (Smith
et al., 2016). The major and trace elements analysis of the carbonatite
and ultrapotassic rocks imply that these two rocks originated from
separate mantle melts (Poletti et al., 2016). Bastnaesite-(Ce) is the major
REE-bearing mineral with minor monazite-(Ce) and parisite-(Ce) (Smith
et al., 2016). This deposit is extremely enriched in LREEs with an ore
grade of 8.5% total REOs but Nb depleted (Castor, 2008; Smith et al.,
2016; Zhou et al., 2016), and it used to be the largest LREE mining
project from the 1960s to the mid-1990s in the world (Castor, 2008).
The mining of this deposit was stopped several times for various reasons
but was reopened again in the first quarter of 2018 to meet the domestic
high REE demand (Koltun and Tharumarajah, 2014; Ash, 2019).

5. Conclusions

REEs are crucial for various high-technological industrial applica-
tions, given their special physicochemical properties. They find exten-
sive use in metallurgy, energy, military, and agriculture sectors, leading
to a steady growth in demand. However, the production of REEs is
limited by geographical constraints, mining and smelting technologies,
and policies, among other factors. As a result, the global supply of REEs
remains unstable and uncertain. Currently, many countries are actively
seeking to acquire additional REE resources to meet their domestic
needs. In light of these circumstances, we aimed to provide a timely and
in-depth review of REE mineralogy, occurrences, distributions, and the
genesis of major REE deposits. The goal was to enhance our under-
standing of REE resources worldwide and aid in the exploration of new
REE mineral deposits. Although we have classified REE deposits based
on their occurrences, the majority cannot be attributed to a single
mineralization process. This is because mineralization resulting from
geological activities is often a complex process involving multiple pe-
riods, stages, and interrelated constraints. At present, carbonatite-
related REE deposits and their weathered residuals, and IADs stand
out as the most prominent REE deposits being actively exploited glob-
ally. But REE-enriched phosphate deposits and coal mines have the
potential to serve as a substantial resource for REE. China remains the
world’s largest producer of REEs, but countries worldwide are expand-
ing their domestic REE production capacity to alleviate concerns about
the supply of rare earths due to geopolitical policies.
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