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Abstract

Ab initio electronic structure theory has transformed gas-phase molecular science with its

predictive ability. In the attempt to bring such predictive ability to macroscopic systems and

condensed matter, the theory must integrate quantum mechanics with statistical thermody-

namics, so that thermodynamic functions such as free energy, internal energy, entropy, and

chemical potentials are computed as functions of temperature in a systematically converging

series of approximations. A general, versatile strategy of elevating ab initio electronic structure

theory to nonzero temperatures is introduced and discussed.
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Quantum many-body theory deals with a system of many interacting particles obeying a quantum-

mechanical equation of motion. Although many of its underlying ideas and mathematical tools

have originated in nuclear physics and quantum electrodynamics, the most fully developed is ab

initio electronic structure theory for atoms and molecules.1 This is partly thanks to the availabil-

ity of the exact electronic Hamiltonian, negligible non-Born–Oppenheimer effects, and a body of

precise experimental data for tens of millions of catalogued molecules. It offers several hierarchies

of systematic approximate methods that are convergent towards the exact solution of the elec-

tronic Schrödinger equation. These hierarchies, such as configuration-interaction (CI) theory,2,3

coupled-cluster (CC) theory,2,4,5 many-body perturbation theory (MBPT),2,5,6 have complemen-

tary strengths and weaknesses, and their applicabilities and cost-accuracy balances are well docu-

mented. All conceivable electronic properties have been formulated within their frameworks and

are computable with predictive accuracy. It may be said that the predictive abilities of ab initio

relativistic electronic structure theory helped vet special theory of relativity most rigorously.7,8

Size-extensive (or size-consistent)9 members of these hierarchies can, in principle, achieve the

same for macroscopic chemical systems. Such ab initio condensed-matter applications are also

rapidly becoming a reality by virtue of advances in algorithms and computing technologies.10–23

For condensed matter, discrete energies are no longer as useful as in atomic or molecular cases;

instead, thermodynamic functions such as free energies, internal energy, and entropy are desired

as direct observables of experiments; everything exists at a finite temperature, and the default

zero-temperature approximation becomes inaccurate or even irrelevant for metallic solids, small-

gap semiconductors, nonideal atomic or molecular gases and liquids, etc. A whole new ab initio

theory is needed that integrates quantum mechanics and statistical thermodynamics for systems

containing Avogadro’s number of interacting particles.

Today, ab initio electronic structure theory faces an exciting prospect of expanding into a new

dimension of quantum statistical mechanics by incorporating thermodynamic variables of tem-

perature, pressure, and chemical potential as inputs and by reporting thermodynamic functions as

outputs. The existing zero-temperature theories for an isolated atom or molecule would become
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just a special case of the more general, finite-temperature theories for thermodynamic functions

of macroscopic chemical systems (however, see below for a surprise twist!). Not only should the

latter be able to describe such fascinating thermal electronic effects as Mott transitions,24 Peierls

distortion,25 and high-Tc superconductivity,26 but they may also bridge the gap between ab initio

electronic structure theory and classical theories of nonideal gases and liquids such as the Ursell–

Mayer cumulant expansion,27–34 which has inspired CC theory, thus coming full circle.

Starting from ab initio quantum chemistry for light-element atoms and molecules at zero tem-

perature, we have added a new physics dimension of “size” to reach ab initio condensed matter

physics.18 We have also introduced an orthogonal dimension of “speed” to define ab initio relativis-

tic quantum chemistry,7 which can address any molecule made of any elements across the periodic

table. The present research program explores another orthogonal dimension of “temperature,” el-

evating the underlying physics from quantum mechanics to quantum statistical thermodynamics.

Together, they cover quantum many-body physics of all conceivable chemical systems at equilib-

rium made of any number of particles interacting through a potential of any mathematical form at

any temperature. A finite-temperature extension of ab initio electronic structure theory, therefore,

has a potential of ultimately evolving into chemical theory of everything (Fig. 1).

This Perspective documents challenges we have faced in formulating a finite-temperature ex-

tension of the MBPT hierarchy, in particular, of ab initio electronic structure theory, and our gen-

eral and versatile strategy of overcoming them.

Quantum Statistical Mechanics

Let us briefly summarize the exact theory of equilibrium thermodynamics of electrons in the

grand canonical ensemble.34–36 It can describe an ideal gas of atoms or molecules that can ex-

change electrons while maintaining the overall charge neutrality of the gas. It is also applicable to

electronic structures of solids and liquids.

The grand partition function Ξ is defined by

Ξ ≡
∑

I

e−β(EI−µNI ), (1)

4



Figure 1: Dimensions of quantum many-body theory for chemistry.

where β = (kBT )−1 is the inverse temperature, EI and NI are the energy and number of electrons in

the Ith state, and the summation is taken over all states with any number of electrons down to zero.

The chemical potential µ takes the value that makes the average number of electrons cancel exactly

the total nuclear charge. Without this provision, the system would be a massively charged plasma,

which no longer obeys equilibrium thermodynamics because the energy is not extensive.37–40 If the

constituent particles are not electrically charged, µ can take an arbitrary value.

Thermodynamic functions are then unambiguously derived from Ξ or, equivalently, defined

with the Ith-state thermal population (density-matrix element),

ρI ≡
e−β(EI−µNI )

Ξ
. (2)

5



The grand potential Ω, internal energy U, and entropy S are given by

Ω ≡ −
1
β

lnΞ =
∑

I

ρI(EI − µNI) +
1
β

∑
I

ρI ln ρI , (3)

U ≡ −
∂

∂β
lnΞ + µN̄ =

∑
I

ρIEI , (4)

S ≡
U −Ω − µN̄

T
= −kB

∑
I

ρI ln ρI , (5)

whereas the average number of electrons N̄,

N̄ ≡
1
β

∂

∂µ
lnΞ =

∑
I

ρINI , (6)

must agree with the total nuclear charge, and this condition determines µ. Since Ω = −PV ,34 the

pressure P and volume V tacitly enter the formalism.

The two definitions of each thermodynamic function — one based on Ξ and the other on ρI

— are fully equivalent to each other in this exact theory, but this is not necessarily the case in an

approximate theory. The exact theory also satisfies the fundamental thermodynamic relationships

such as

Ω = U − µN̄ − TS , (7)

N̄ = −
∂Ω

∂µ
, (8)

S = −
∂Ω

∂T
, (9)

whose adherence also needs to be checked for an approximate theory.

Thermodynamics of electrons in the canonical ensemble is described by the foregoing for-

malisms by setting µ = 0 and restricting the summation over I to only charge-neutral states. Note

that different ensembles must converge in a sound application of equilibrium thermodynamics39

(violating cases include a massively charged plasma mentioned above and a celestial mechanical

system held together by gravitation, both characterized by long-range forces). For instance, the
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grand canonical ensemble of an ideal gas of atoms that can exchange electrons should be recov-

ered exactly by the canonical ensemble for an ideal gas of clusters of noninteracting atoms that can

exchange electrons, in the limit of an infinite cluster size.

Finite-Temperature Full Configuration Interaction

A unique advantage of ab initio electronic structure theory, which may be responsible for its

rapid development, is the availability of the full-configuration-interaction (FCI) method3 that de-

termines an exact, basis-set solution of the electronic Schrödinger equation. It offers benchmark

data, with which a whole hierarchy of converging approximations can be verified, calibrated, and

assessed.

It is straightforward41 to extend the FCI method to the grand canonical ensemble because its

zero-temperature counterpart can define unambiguously and calculate exactly all state energies

with any number of electrons. These energies are then summed over to form the grand partition

function Ξ. TheΩ can be obtained immediately from Ξ. The U and N̄ are computed by the density-

matrix definitions rather than from Ξ because its partial derivatives with respect to β or µ cannot be

easily taken numerically (µ tends to vary with β and vice versa in a finite-difference method). The

value of µ that maintains the charge-neutrality can be determined by a bisection method, using the

calculated N̄. The method can be trivially extended to the canonical ensemble.41

The string-based, general-order algorithm42 is most suitable for computer implementation be-

cause it can be readily upgraded to a (zero-temperature) general-order MBPT43 or general-order

CC method.44 The finite-temperature FCI method is hence an invaluable pilot for the developments

of all finite-temperature ab initio electronic structure methods and their initial computer programs.

Note, however, that it is based on sum-over-states formalisms and prohibitively expensive, useful

primarily for assisting the developments of more practical methods, which must be expressed by

sum-over-orbitals formulas.

Fermi–Dirac Theory

Many ab initio theories start with a zeroth-order or reference approximation, which is then sys-

tematically improved. For electrons, we often rely on Fermi–Dirac theory41,45–47 as the reference
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method, which is defined by a one-electron approximation to the Hamiltonian,

Ĥ(0) ≡
∑

p

ϵp p̂† p̂, (10)

where p̂† and p̂ are a creation and annihilation operator of an electron in the pth spin orbital with

the orbital energy ϵp. With this approximation, each zeroth-order energy E(0)
I of the Ith Slater-

determinant state is the sum of occupied orbital energies, leading to a drastic simplification in the

zeroth-order grand partition function:

Ξ(0) ≡
∑

I

e−β(E
(0)
I −µ

(0)NI ) =
∏

p

(
1 + e−β(ϵp−µ

(0))
)
, (11)

where the sum is over an exponential (or even factorial) number of all Slater-determinant states, but

the product is taken over all spin orbitals only. All thermodynamic functions are also analytically

transformed into compact sum-over-orbitals expressions, which can be evaluated almost instantly

for systems of any size including three-dimensional solids:

Ω(0) =
∑

p

(
ϵp − µ

(0)
)

f −p

+
1
β

∑
p

(
f −p ln f −p + f +p ln f +p

)
, (12)

U (0) =
∑

p

ϵp f −p , (13)

S (0) = −kB

∑
p

(
f −p ln f −p + f +p ln f +p

)
, (14)

as well as

N̄ =
∑

p

f −p , (15)

8



which is solved for µ(0). The f ∓p are the Fermi–Dirac distribution functions given by

f −p =
1

1 + eβ(ϵp−µ(0))
; f +p = 1 − f −p . (16)

The same drastic simplification embodied by Eq. (11) does not transpire in the canonical en-

semble. Whether sum-over-states formulas simplify into sum-over-orbitals formulas largely deter-

mines the practical utility of a method, and in this sense, the grand canonical ensemble is useful,

while the canonical ensemble is useless. The author could not identify any profound physical rea-

son for this crucial mathematical difference. Since both ensembles are ultimately equivalent and

the grand canonical ensemble encompasses the canonical ensemble, we might be fortunate.

Strictly speaking, Fermi–Dirac theory is no longer “ab initio” because the Hamiltonian is al-

tered. However, finite-temperature MBPT based on Fermi–Dirac theory as the zeroth-order ap-

proximation takes into account the difference Ĥ − Ĥ(0) as perturbation and restores the status of ab

initio.

Finite-Temperature Many-Body Perturbation Theory

A finite-temperature version of MBPT has been extensively developed by Bloch and cowork-

ers,29,48,49 exploiting the isomorphism of the time-dependent Schrödinger equation and the β-

dependent Bloch equation where β plays the role of imaginary time.45,50–54 However, this time-

dependent derivation is even less transparent and less flexible than the same approach sometimes

adopted for zero-temperature MBPT in this fundamentally time-independent problem. In it, for

instance, the chemical potential, internal energy, and entropy are not expanded in mutually consis-

tent perturbation series, leaving only the grand potential formula with a fixed chemical potential,

quickly violating the charge neutrality of the macroscopic electronic structures. Even the first-order

corrections to these thermodynamic functions have not been spelled out for a long time.

Then, a more disturbing problem was discovered by Kohn and Luttinger.55 They showed that

the finite-temperature MBPT thus derived may not reduce to the well-established zero-temperature

MBPT for a homogeneous electron gas (HEG) as temperature T goes to zero. On this basis, Kohn
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and Luttinger concluded:55 “The BG [Brueckner–Goldstone perturbation] series is in general not

correct.” Although this internal inconsistency between finite- and zero-temperature MBPT — the

Kohn–Luttinger nonconvergence problem — was later shown56 to be circumvented in a HEG, it

was predicted to persist for a general degenerate reference. Over the next sixty years, however, this

prediction has never been confirmed analytically or numerically, sowing confusions.

The depth of the confusions can be sensed in the following quotations from textbooks for

quantum many-body theory, casting doubt on the validity of the very finite-temperature MBPT

these textbooks are teaching:

“. . . a note of caution is called for whenever we attempt to calculate zero-temperature

properties from an expression for the same quantities at nonzero temperatures T by

taking the limit T → 0. The physics is not necessarily the same in both cases.”53

“In any case it serves as a warning against taking the results of perturbation theory too

seriously.”50

They underscore the existence of a gap in fundamental theoretical physics, awaiting a resolution.

The significance and urgency of such a resolution are elevated by the fact that zero-temperature ab

initio second-order MBPT [MBPT(2)] calculations for one-dimensional solids have been routine

since 1990s10–14,17,22 and extended to MBPT(4)10,11 and CC with singles and doubles (CCSD)15,16,19

and to three-dimensional solids20–23 more recently.

To resolve this issue, we first established a transparent, robust, and general approach to pos-

tulating finite-temperature MBPT for all thermodynamic functions at all perturbation orders.57–59

It consists of two vital elements: First, we base the finite-temperature formulation on an unam-

biguous definition of the grand partition function, from which all thermodynamic functions can be

derived, entirely in a time-independent picture. Second, we return to the canonical definition of

any perturbation theory,5,60 in which the nth-order correction to an observable X is given by

X(n) =
1
n!
∂nX(λ)
∂λn

∣∣∣∣∣
λ=0
, (17)
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where X(λ) is the exact value of X for a perturbation-scaled Hamiltonian, Ĥ = Ĥ(0) + λV̂ , with

λ being the dimensionless perturbation strength. Defined as such, the perturbation series is, by

construction, size-extensive and convergent toward exactness.5 (Conversely, a “perturbation the-

ory” that does not adhere to this canonical definition, such as Brillouin–Wigner perturbation the-

ory, tends to lack size-extensivity.5) This approach is in sharp contrast with the previous time-

dependent, diagrammatic formulation of zero- and nonzero-temperature MBPT, which exploits the

coincidental similarity between the Schrödinger and Bloch equations and tacitly relies on human

intuitions when a whole set of diagrams needs to be conjured up exhaustively.29,45,48–54 Its absence

of an unambiguous grand partition function makes it unclear how thermodynamic functions other

than the grand potential are expanded in consistent perturbation series and whether the series are

convergent.

Our approach, instead, starts with the exact grand partition function of Eq. (1) and differen-

tiating it with respect to λ, leading to a Rayleigh–Schrödinger-like recursion relationship for the

perturbation corrections to grand potential Ω(n) reliably and straightforwardly,59

Ω(n) = ⟨D(n)⟩ +
(−β)
2!

n−1∑
i=1

(
⟨D(i)D(n−i)⟩ −Ω(i)Ω(n−i)

)
+

(−β)2

3!

n−2∑
i=1

n−i−1∑
j=1

(
⟨D(i)D( j)D(n−i− j)⟩ −Ω(i)Ω( j)Ω(n−i− j)

)
+ · · · +

(−β)n−1

n!

(
⟨(D(1))n⟩ − (Ω(1))n

)
, (18)

and to similar recursions for the internal energy U (n), entropy S (n), and chemical potential µ(n). All

we have to do is to differentiate the exact definitions of thermodynanmic functions with λ, such as

Eqs. (3)–(6), involving no more than some exponentials and logarithms; no complex analysis or

top-down diagrammatics are needed. Here, ⟨X⟩ means a zeroth-order thermal average,

⟨X⟩ =
∑

I XIe−β(E
(0)
I −µ

(0)NI )∑
I e−β(E

(0)
I −µ

(0)NI )
, (19)
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where XI is the value of property X for the Ith Slater-determinant state, and D(n)
I ≡ E(n)

I − µ
(n)NI .

The E(n)
I , in turn, is the nth-order correction to the Ith Slater-determinant state obtained by a

size-extensive, convergent perturbation theory that adheres to the canonical definition of perturba-

tion theory, Eq. (17). Such a perturbation theory, which must accommodate both nondegenerate

and degenerate Slater-determinant references, exists under various names61 including the one fully

developed by Hirschfelder and Certain.62 It defines, in a consistent, uniform, unambiguous ap-

proximation, the energies of all states with any number of electrons that enter the grand partition

function, ensuring the internal consistency, size-extensivity, and exact convergence of the resulting

finite-temperature MBPT at all perturbation orders.59 (By “exact convergence,” we do not mean

absolute convergence, but rather that if the perturbation series does converge, it converges at the

exact limit, because it does not overlook or incorrectly evaluate any term.)

Recursions such as Eq. (18) can be implemented into a general-order algorithm by modifying

a string-based, finite-temperature FCI program. It provides benchmark data for Ω(n), U (n), S (n), and

µ(n) for any arbitrary perturbation order n at a FCI computational cost.59 Alternatively, Eq. (17)

can be evaluated for X = Ω, U, S , or µ by numerically differentiating the corresponding quantities

calculated by finite-temperature FCI with a perturbation-scaled Hamiltonian, Ĥ = Ĥ(0) + λV̂ .63

The latter, which we call the λ-variation method,60 offers a second route to benchmark data for the

several lowest perturbation orders, again at a FCI cost. They agree with each other numerically

exactly,57–59 mutually verifying the recursions and computer programs. They are easily extended

to the canonical ensemble.64

When applied to an ideal gas of molecules (an ensemble of an infinite number of identical,

neutral, nonvibrating, nonrotating molecules that do not interact with each other, but can exchange

electrons), our “new” finite-temperature MBPT is convergent59 toward the finite-temperature FCI

(see Fig. 2) unless it is divergent. (Recall that a perturbation series is inevitably occasionally diver-

gent because it has a finite radius of convergence toward FCI; the Kohn–Luttinger nonconvergence

problem is fundamentally different from this because it implies the zero radius of convergence to-

ward zero-temperature MBPT under some conditions.) This proves the finite-temperature MBPT
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is correct and complete in that no term is overlooked and every term is evaluated correctly. All

fundamental thermodynamic relationships, such as Eqs. (7)–(9), are obeyed by perturbation cor-

rections on an order-by-order basis (not necessarily by their sums).59
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Figure 2: The difference in the grand potential (∆Ω in Eh) between finite-temperature MBPT(n)
and finite-temperature FCI for an ideal gas of the hydrogen fluoride molecules as a function of
perturbation order n.59

These converging “new” perturbation correction formulas57–59 differ from the “old” ones54,65,66

obtained by the time-dependent derivation. Figure 3 plots the first- and second-order perturbation

approximations to the grand potential obtained by two different derivation strategies against the

exact (finite-temperature FCI) results across a wide range of temperature. While the “new” pertur-

bation approximations systematically approach the exact results as the perturbation order is raised

from one to two (to three to four at some temperatures), the “old” perturbation approximations

deviate more and more from the exact values with increasing temperature. This is not so much

because the “old” formulas are erroneous as because they lack the ability to improve the chemical

potential perturbatively; the “old” formulas would be correct if the particles were not electrically

charged and the chemical potential could be arbitrarily chosen. For electrons, this is not the case
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and the chemical potential must also change from the zeroth to first to infinite order to main-

tain the charge-neutrality at every order; lest the equilibrium thermodynamics break down. The

“old” grand potentials in this figure are evaluated with the chemical potentials held fixed at their

zeroth-order Fermi–Dirac values at respective temperatures, which differ from the exact chemi-

cal potentials considerably, describing a massively charged plasma that does not obey equilibrium

thermodynamics. This, in turn, is caused by the fact that the time-dependent derivation starting

with the Bloch equation is not flexible enough to provide a clear path to perturbation correction

formulas for the chemical potential, internal energy, and entropy. Our alternative, general, and ver-

satile strategy of defining the grand partition function followed by differentiating it with λ repairs

this shortcoming.
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Figure 3: Comparison of the “old” and “new” perturbation approximations to the grand potential
(the common zeroth-order grand potential is subtracted for clarity) for the same system as Fig. 2.
The exact (finite-temperature FCI) results are superposed.59,63

Now that the sum-over-states formulas for all thermodynamic functions at all perturbation or-

ders can be reliably obtained in the form of recursions, the next important question is: Do they lend

themselves to the same drastic simplification to sum-over-orbitals formulas such as in Fermi–Dirac
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theory? If they did not, the theory would never be useful in practical applications for macroscopic

systems because they would cost more than a FCI calculation even at the lowest orders.

At first glance, it appears hopeless that such a simplification takes place because E(n) enter-

ing the recursions are the eigenvalues of the following perturbative energy matrix E(n) within a

degenerate subspace, and eigenvalues are generally not expressed in a closed form:

E(n) =


⟨Φ

(0)
1 |V̂ |Φ

(n−1)
1 ⟩ . . . ⟨Φ(0)

1 |V̂ |Φ
(n−1)
M ⟩

...
...

⟨Φ
(0)
M |V̂ |Φ

(n−1)
1 ⟩ . . . ⟨Φ(0)

M |V̂ |Φ
(n−1)
M ⟩

 , (20)

where M is the degree of degeneracy, and Slater-determinant states Φ(0)
1 through Φ(0)

M share the

same zeroth-order energy E(0)
1 = · · · = E(0)

M . However, with the aid of a few mathematical tricks,

we can indeed simplify the sum-over-states formulas into sum-over-orbitals expressions exactly,

rendering the finite-temperature MBPT efficiently applicable to infinite systems. This can be best

explained by examples:

The recursion of Eq. (18) gives a sum-over-states formula for the first-order grand potential,

Ω(1) = ⟨D(1)⟩ = ⟨E(1)⟩ − µ(1)N̄. (21)

For a nondegenerate reference, E(1)
I =

∑I
i hii+

1
2

∑I
i, j⟨i j||i j⟩−

∑I
i ϵi, where

∑I
i means that i runs over

all spin orbitals occupied in the Ith Stater determinant, hpq is a one-electron integral, and ⟨pq||rs⟩

is an antisymmetrized two-electron integral. If all states were nondegenerate at the zeroth order,

we could reduce this zeroth-order thermal average into a sum-over-orbitals expression as

⟨E(1)⟩ =

∑
I E(1)

I e−β(E
(0)
I −µ

(0)NI )∑
I e−β(E

(0)
I −µ

(0)NI )
(22)

=
∑

p

hpp f −p +
1
2

∑
p,q

⟨pq||pq⟩ f −p f −q −
∑

p

ϵp f −p , (23)

using combinatorial identities listed in Appendix A of Hirata and Jha,58 which can be worked out
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relatively easily on demand. Here,
∑

p means that p runs over all spin orbitals, and f −p is the Fermi–

Dirac distribution function given in Eq. (16). Note that the summations in Eq. (23) are at most the

number of orbitals squared in length and can be carried out for solids, while the summations in Eq.

(22) are over exponentially (or factorially) many Slater determinants and are hopeless even for a

midsize molecule.

It is, however, more a rule than an exception that many zeroth-order Slater-determinant states

are degenerate. The E(1)
I s for those degenerate states are the eigenvalues of the nondiagonal matrix

of Eq. (20), whose elements are given variously as

E(1)
IJ =

I∑
i

hii +
1
2

I∑
i, j

⟨i j||i j⟩ −
I∑
i

ϵi, for ΦJ = ΦI; (24)

E(1)
IJ = hia +

I∑
j

⟨i j||a j⟩, for ΦJ = (ΦI)a
i ; (25)

E(1)
IJ = ⟨i j||ab⟩, for ΦJ = (ΦI)ab

i j ; (26)

and are zero otherwise. Eigenvalues of such a matrix (or of any matrix larger than 4 × 4) cannot

be expressed in a closed form, making any further simplification appear unlikely. Nevertheless,

we can indeed simplify ⟨E(1)⟩ for mixed degenerate and nondegenerate references into the same

sum-over-orbitals expression of Eq. (23). This is because the eigenvalues in a degenerate subspace

are summed over with an equal weight of e−β(E
(0)
I −µ

(0)NI ), and, therefore, we do not need to know

the individual eigenvalues to carry out this summation correctly; we only need the sum of the

eigenvalues in each degenerate subspace, and this sum is equal to the trace, i.e., the sum over Eq.

(24), leading to the same sum-over-orbitals formula of Eq. (23).

Together, we find57–59

Ω(1) =
∑

p

Fpp f −p −
1
2

∑
p,q

⟨pq||pq⟩ f −p f −q − µ
(1)N̄, (27)

where Fpq = ϵ
HF
pq − δpqϵp with ϵHF

pq = hpq +
∑

r⟨pr||qr⟩ f −r being the finite-temperature Fock matrix

that defines thermal Hartree–Fock (HF) theory.46,47 Combining with Ω(0) of Fermi–Dirac theory,
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Eq. (12), we obtain

Ω(0) + Ω(1) =
∑

p

(
hpp − µ

(0) − µ(1)
)

f −p +
1
2

∑
p,q

⟨pq||pq⟩ f −p f −q +
1
β

∑
p

(
f −p ln f −p + f +p ln f +p

)
, (28)

which closely mirrors the grand potential of thermal HF theory,46,47 but not exactly, with an impor-

tant difference59 (see below).

The second order becomes more instructive.58,59 The sum-over-states formula of Ω(2) is ob-

tained from the recursion, Eq. (18), as

Ω(2) = ⟨D(2)⟩ −
β

2

(
⟨D(1)D(1)⟩ − ⟨D(1)⟩⟨D(1)⟩

)
= ⟨E(2)⟩ −

β

2

(
⟨E(1)E(1)⟩ − ⟨E(1)⟩⟨E(1)⟩

)
−µ(2)N̄ + βµ(1)

(
⟨E(1)N⟩ − ⟨E(1)⟩⟨N⟩

)
−
β

2

(
µ(1)
)2 (
⟨NN⟩ − ⟨N⟩⟨N⟩

)
. (29)

The first term, ⟨E(2)⟩, can be reduced as before by using the fact that the sum of the eigenvalues

of a matrix is equal to the sum of its diagonal elements. For either a degenerate or nondegenerate

reference, the diagonal element can be written in the same, closed form of

E(2)
II =

denom.,0∑
i,a

|hia +
∑

j⟨i j||a j⟩|2

ϵi − ϵa
+

1
4

denom.,0∑
i, j,a,b

|⟨i j||ab⟩|2

ϵi + ϵ j − ϵa − ϵb
, (30)

where i, j (a, b) run over spin orbitals occupied (unoccupied) in the Ith Slater determinant and

“denom., 0” means that the summations are restricted to nonzero denominators (ϵi − ϵa , 0 or

ϵi + ϵ j − ϵa − ϵb , 0). Using combinatorial identities listed in Appendix A of Hirata and Jha,58 we

can take its zeroth-order thermal average to obtain

⟨E(2)⟩ =

denom.,0∑
p,q

|Fpq|
2 f −p f +q

ϵp − ϵq
+

1
4

denom.,0∑
p,q,r,s

|⟨pq||rs⟩|2 f −p f −q f +r f +s
ϵp + ϵq − ϵr − ϵs

, (31)

where Fpq = ϵ
HF
pq − δpqϵp, and p, q, r, s run over all spin orbitals excluding zero-denominator cases.
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Going from Eq. (30) to (31) is far more tedious than their apparent similarities may suggest, but

what is important is the fact that the derivation logic is linear and every step of it involves no more

than elementary combinatorial arithmetic.

The foregoing derivation may give a false impression that the off-diagonal elements of the

perturbative energy matrix, Eq. (20), are irrelevant; they are indeed essential in the second term,

⟨E(1)E(1)⟩ − ⟨E(1)⟩⟨E(1)⟩, of Eq. (29). For a nondegenerate state, the corresponding summands of

⟨E(1)E(1)⟩ and ⟨E(1)⟩⟨E(1)⟩ cancel out exactly, which is desirable and expected because individually

they are nonsize-extensive. In a degenerate subspace, ⟨E(1)E(1)⟩ is the zeroth-order thermal average

of the squares of the eigenvalues of E(1). Owing to the trace invariance of a cyclic matrix product,

the sum of the eigenvalues squared is equal to the sum of the diagonal elements of the matrix

squared, (E(1))2. Furthermore, a diagonal element of the squared matrix can be broken down into

components:

(E(1))2
II = ⟨ΦI |V̂ |ΦI⟩⟨ΦI |V̂ |ΦI⟩ +

denom.=0∑
i,a

⟨ΦI |V̂ |(ΦI)a
i ⟩⟨(ΦI)a

i |V̂ |ΦI⟩

+

denom.=0∑
i, j,a,b

⟨ΦI |V̂ |(ΦI)ab
i j ⟩⟨(ΦI)ab

i j |V̂ |ΦI⟩ (32)

where i, j (a, b) run over spin orbitals occupied (unoccupied) in the Ith Slater determinant, “denom.=

0” means that summations are restricted to only those (ΦI)a
i and (ΦI)ab

i j that are degenerate with ΦI

(or whose fictitious denominators, ϵi − ϵa or ϵi + ϵ j − ϵa − ϵb, are zero). The thermal average of the

first term (nonsize-extensive, diagonal product) no longer cancels out exactly the corresponding

summand in ⟨E(1)⟩⟨E(1)⟩, leaving a nonzero residual that must not be overlooked.58

Using the sum-over-orbitals formulas of these off-diagonal elements of E(1) in Eqs. (25) and

(26) in conjunction with combinatorial identities,58 after an extremely tedious, yet straightforward

arithmetic, we obtain

⟨E(1)E(1)⟩ − ⟨E(1)⟩⟨E(1)⟩ =

denom.=0∑
p,q

|Fpq|
2 f −p f +q +

1
4

denom.=0∑
p,q,r,s

|⟨pq||rs⟩|2 f −p f −q f +r f +s , (33)
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where the meaning of “denom.= 0” has already been mentioned. Repeating the same process for

every term, we finally get a sum-over-orbitals formula,58,59

Ω(2) =

denom.,0∑
p,q

|Fpq|
2 f −p f +q

ϵp − ϵq
+

1
4

denom.,0∑
p,q,r,s

|⟨pq||rs⟩|2 f −p f −q f +r f +s
ϵp + ϵq − ϵr − ϵs

−
β

2

denom.=0∑
p,q

|Fpq|
2 f −p f +q −

β

8

denom.=0∑
p,q,r,s

|⟨pq||rs⟩|2 f −p f −q f +r f +s

−µ(2)N̄ + βµ(1)
∑

p

Fpp f −p f +p −
β

2

(
µ(1)
)2∑

p

f −p f +p , (34)

which differs from the “old” formula54,65,66 by the last three terms all involving perturbation cor-

rections to the chemical potential. This expression should be efficiently evaluable for solids.

The perturbation corrections to µ, U, and S are obtained completely analogously:58,59 Step one,

differentiate the exact definitions of these thermodynamic functions, Eq. (4)–(6), with respect to

λ to arrive at recursions; Step two, obtain order-by-order sum-over-states formulas for the pertur-

bation corrections from the recursions; Step three, reduce each zeroth-order thermal average in

the sum-over-states formulas by combining the degenerate perturbation energy expressions, trace

invariance of cyclic matrix products to avoid eigenvalues, and combinatorial identities to arrive at

compact sum-over-orbitals formulas. (The last step, especially the discoveries of combinatorial

identities, seems only possible in the grand canonical ensemble, but not in the canonical ensem-

ble.) Thus, both sum-over-states and sum-over-orbitals expressions for Ω(n), µ(n), U (n), and S (n) for

1 ≤ n ≤ 3 have been established for the first time.57–59 For instance,

µ(1) =

∑
p Fpp f −p f +p∑

p f −p f +p
, (35)

and

U (1) =
∑

p

Fpp f −p −
1
2

∑
p,q

⟨pq||pq⟩ f −p f −q − β
∑

p

(
Fpp − µ

(1)
)
ϵp f −p f +p , (36)

U (0) + U (1) =
∑

p

hpp f −p +
1
2

∑
p,q

⟨pq||pq⟩ f −p f −q − β
∑

p

(
Fpp − µ

(1)
)
ϵp f −p f +p . (37)
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The last expression is close, but not equal to the internal energy of thermal HF theory46,47,59 (see

below). See the original papers58,59 for other higher-order formulas.

Just as in the historical development of zero-temperature Møller–Plesset perturbation theory for

atomic and molecular applications,2,5,6,43 in the finite-temperature MBPT also, the recursions and

subsequent algebraic reductions can be first established,57–59 upon which more expedient quantum-

field-theoretical techniques of normal-ordered second quantization and Feynman diagrams at fi-

nite temperature59 can be built bottom up. On this basis, the linked-diagram theorem (thus size-

extensivity) at finite temperature can be rigorously proven,59 although this is implied by the ad-

herence to the canonical definition of perturbation theory, Eq. (17). Unusual diagrams such as the

anomalous55 and renormalization59 diagrams are shown to manifest only at nonzero temperature,

which are also anticipated by the aforementioned, straightforward (if tedious) algebraic deriva-

tions.59 The anomalous diagrams, such as the third and fourth terms of Ω(2) in Eq. (34) carrying

a factor of β, have been implicated in the Kohn–Luttinger nonconvergence problem,55 which we

now discuss.

Kohn–Luttinger Nonconvergence Problem

The internal energy — the thermal average of all state energies — must reduce to the energy

of the lowest-lying states that are solely populated as T → 0. In the exact theory, therefore,

lim
T→0

U = lim
T→0

∑
I EIe−β(EI−µNI )∑

I e−β(EI−µNI )
= E0. (38)

Since this statement appears so self-evident, Kohn and Luttinger’s prediction55 that this may not be

the case with perturbation approximations for a degenerate reference is highly counterintuitive, and

it has been dismissed by some researchers.54,66 According to Kohn and Luttinger,55 the deviation

of the zero-temperature limit of U (n) from E(n)
0 could be infinity because some terms in U (n) carry a

divergent factor of β = (kBT )−1 [see, e.g., Eq. (36)].

With the converging finite-temperature MBPT formulas for all thermodynamic functions and

their general-order implementation fully established as described above,59 we are in a unique po-
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sition to prove or disprove Kohn and Luttinger’s prediction both analytically and numerically. The

question is whether the following equality holds or not for a general degenerate reference:

lim
T→0

U (n) ?
= E(n)

0 , (39)

where E(n)
0 is the nth-order degenerate perturbation correction62 to the ground-state energy.

Let us first examine the numerical results of a general-order finite-temperature MBPT calcu-

lation for an ideal gas of the square planar H4 molecule with a degenerate HF reference.67 Figure

4 shows that only U (0) of Fermi–Dirac theory reduces correctly to E(0)
0 , but as soon as the pertur-

bation is turned on, the internal energies approach wrong zero-temperature limits: U (1) converges

at a finite value as T → 0, but it differs from E(1)
0 of degenerate perturbation theory; at the second

and all higher orders, U (n) is divergent as T → 0, while the corresponding E(n)
0 is always finite (not

shown to avoid clutter), displaying an infinite error at T = 0. This figure, therefore, unequivocally

confirms the existence of the Kohn–Luttinger nonconvergence problem.67,68

These numerical results can be rationalized analytically.67 The recursion59 for U (n) gives the

following sum-over-states formulas67 for n = 0, 1, and 2:

U (0) = ⟨E(0)⟩, (40)

U (1) = ⟨E(1)⟩ − β cov
[
D(0),D(1)

]
, (41)

U (2) = ⟨E(2)⟩ − β cov
[
D(1),D(1)

]
− β cov

[
D(0),D(2)

]
+
β2

2
cov
[
D(0), (D(1))2

]
− β2cov

[
D(0),D(1)

]
⟨D(1)⟩, (42)

where cov[X,Y] ≡ ⟨XY⟩ − ⟨X⟩⟨Y⟩ and D(n)
I ≡ E(n)

I − µ
(n)NI with E(n)

I being the Ith eigenvalue of the

nth-order perturbation energy matrix of Eq. (20).

If the reference is nondegenerate, each zeroth-order thermal average ⟨. . . ⟩ is dominated by the
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Figure 4: Perturbation corrections to the internal energy (U (n); 0 ≤ n ≤ 5) as a function of temper-
ature for an ideal gas of the square-planar H4 molecules with a degenerate reference. Perturbation
corrections to the ground-state energy (E(n)

0 ; 0 ≤ n ≤ 1) from degenerate perturbation theory (as the
correct zero-temperature limits) are shown as dashed lines. E(n)

0 for n ≥ 2 are not shown to avoid
clutter, but they are close to zero. Reproduced from Hirata68 with permission from Elsevier.
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single lowest zeroth-order energy state, and limT→0⟨E(n)⟩ = E(n)
0 and limT→0 cov[. . . ] = 0, implying

lim
T→0

U (n) = E(n)
0 for a nondegenerate reference. (43)

There is no Kohn–Luttinger nonconvergence problem in this case.

If instead the reference is M-fold degenerate (E(0)
0 = E(0)

1 = · · · = E(0)
M−1), each zeroth-order

thermal average ⟨. . . ⟩ is now dominated evenly by the M states in this degenerate subspace. There-

fore, limT→0⟨E(n)⟩ = E[E(n)], where the right-hand side is the average of the eigenvalues of E(n)

within the degenerate subspace. The zero-temperature limit of cov[D(i),D( j)] is then the covariance

of the two distributions {D(i)} and {D( j)} within the same degenerate subspace. It is zero if one or

both of the two distributions has zero variance, such as when i = 0 and/or j = 0; otherwise it is

nonzero. Therefore, for a degenerate reference,

lim
T→0

U (0) = E
[
E(0)
]
= E(0)

0 , (44)

lim
T→0

U (1) = E
[
E(1)
] 
= E(1)

0 , if E(1)
0 = · · · = E(1)

M−1;

, E(1)
0 , otherwise,

(45)

lim
T→0

U (2) = E
[
E(2)
]
− β cov

[
D(1),D(1)

] 
= E
[
E(2)

0

]
, if E(1)

0 = · · · = E(1)
M−1;

= −∞, otherwise.
(46)

The zero-temperature limit of Fermi–Dirac theory (U (0)) is always correct, regardless of whether

the reference is degenerate or nondegenerate. The U (1) converges at a finite value as T → 0, and it

agrees with E(1)
0 of degenerate perturbation theory if and only if the degeneracy is not lifted at the

first order. If the degeneracy is lifted, instead, the zero-temperature limit of U (1) is the average of

E(1)
0 , . . . , E

(1)
M−1, which is no longer equal to E(1)

0 ; there is a finite deviation in the zero-temperature

limit of U (1) from the correct limit of E(1). In the latter case, furthermore, cov[D(1),D(1)] is nonzero,

causing U (2) to be divergent as T → 0 (β → ∞), while E(2)
0 is always finite. Hence, there is

an infinite deviation in the zero-temperature limit of U (2) from the correct limit of E(2). (When

E(1)
0 = · · · = E(1)

M−1, but the degeneracy is lifted at the second order, the zero-temperature limit of
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U (2) is the average of E(2)
I s within the degenerate subspace, and is not equal to E(2)

0 .) These explain

Fig. 4 and confirm Kohn and Luttinger’s prediction analytically:67 Finite-temperature MBPT has a

wrong zero-temperature limit if the reference is degenerate and this degeneracy is partially or fully

lifted at some perturbation order. The deviation can be infinite at second and higher orders, which

must not be confused with the well-known infrared divergence of MBPT(n) (n ≥ 2) in a metal.45,52

If we took the zero-temperature limit of the exact U first [Eq. (38)] and then expanded this limit

E0 in a perturbation series next, we would always arrive at the correct zero-temperature limit E(n)
0 at

any perturbation order regardless of the reference. However, this is not the order of actions we take;

we first expand U in a perturbation series, followed by taking the zero-temperature limit, and this

limit is always incorrect under certain conditions. What is the root cause of this nonconvergence?
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Figure 5: (a) State energies of a two-state model as a function of perturbation strength λ. (b)
Internal energy U of the two-state model and its Taylor-series expansions in λ as a function of
temperature T . Reproduced from Hirata67 with permission from American Physical Society.

The nonconvergence can be reproduced by a simple model internal energy U(T ) of a two-state

system:67

U(T ) =
E0(λ)e−E0(λ)/T + E1(λ)e−E1(λ)/T

e−E0(λ)/T + e−E1(λ)/T

∣∣∣∣∣∣
λ=1

, (47)

where E0(λ) and E1(λ) are the energies of the two states, each of which lends itself to a Taylor-

series expansion in perturbation strength λ (λ = 1 corresponds to the physical state). Consider the

case where E0 = −1 − 0.1λ − 0.2λ2 and E1 = −1 + 0.1λ + 0.2λ2 (the left panel of Fig. 5). The E0
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and E1 are degenerate at the zeroth order (λ = 0) and this degeneracy is lifted as the perturbation

(such as correlation) is turned on (λ > 0) and remains lifted in the exact limit (λ = 1). The

corresponding U(T ) as a function of T is drawn as a thick black curve in the right panel of Fig. 5,

which is smooth and convergent at the energy of the lowest-lying state E0(λ = 1) = −1.3 as T → 0.

While the first-order Taylor-series approximation U (0) +U (1) is finite and constant, the second- and

all higher-order Taylor-series approximations are divergent at T = 0. Therefore, the perturbation

(Taylor) series of U(T ) in λ is not convergent at exact U(T = 0) = E0(λ = 1), even though E0 and

E1 are described exactly by second-order perturbation theory. This model, therefore, reproduces

the Kohn–Luttinger nonconvergence occurring when the degeneracy of the reference is lifted at

the first order.

Physically, it may be unsurprising or even expected that a perturbation theory fails if the ref-

erence and exact descriptions are qualitatively different, e.g., when the ground state is degenerate

at the zeroth order, but becomes nondegenerate in the exact limit. However, this expectation alone

does not fully explain the Kohn–Luttinger nonconvergence because zero-temperature MBPT is al-

ways convergent at the correct limit (unless divergent) regardless of the degeneracy of the ground

state and whether it is partially or fully lifted upon inclusion of correlation. The root cause must

be mathematical.

Indeed, the nonconvergence is traced to the fact that the exact U(T ) [Eq. (4) or (47)] is non-

analytic at T = 0 (recall that the Boltzmann factor e−β(E−µN) is also nonanalytic at T = 0).67 A

nonanalytic function refers to a smooth function that is infinitely differentiable, but whose Taylor

series has zero radius of convergence in some domains. Finite-temperature MBPT is, therefore,

an example of nonanalytic physics, wherein perturbation theory tends to fail. Another example

is superconductivity, whose gap formula,69,70 2δ e−1/ρV , is nonanalytic at zero electron-phonon

coupling V . This is why “perturbation theory would not be easy to apply”53 to the problem of

superconductivity even though V is small (recall that the Bardeen–Cooper–Schrieffer theory69,70

is variational). Yet another example is the Feynman–Dyson perturbation expansion of many-body

Green’s functions (MBGF),71 whose exact definitions, (ω−N E0+
N−1EI)−1 and (ω−N+1EI+

N E0)−1,
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are nonanalytic in many domains of ω. Even though the Feynman–Dyson diagrammatic pertur-

bation expansion is the mathematical basis of quantum field theory,72 it is found to be largely

nonconvergent.
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Figure 6: Same as Fig. 4, but with a symmetry-broken nondegenerate reference. Reproduced from
Hirata68 with permission from Elsevier.

Hence, the Kohn–Luttinger nonconvergence problem does exist, but its impact on the theory’s

applications should be limited because it can be avoided easily.68 Figure 6 plots the temperature

dependence of U (n) (0 ≤ n ≤ 5) for the same system as in Fig. 4 obtained with a symmetry-broken

HF solution as the reference, which is no longer degenerate. All of U (n)s thus obtained rapidly

converge at the correct limits of E(n) as T → 0. Switching from a degenerate to nondegenerate

reference is also straightforward; a HF program tends to spontaneously converge towards a lower-

energy, symmetry-broken, nondegenerate root rather than towards a higher-energy, symmetric,

degenerate root. Locating the latter is usually computationally much harder, requiring symmetry

constraints to be imposed.
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Finite-temperature MBPT is efficient, size-extensive, and converging towards exactness, and

its predicted nonconvergence behavior can be avoided easily in practice. It is, therefore, expected

to be a workhorse for insulating or semiconducting solids at nonzero temperature, if not for metals.

It has also been extended to anharmonic vibrations,73 which have a more complex Hamiltonian and

obey Bose–Einstein quantum statistics.

Thermal Hartree–Fock Theory

In zero-temperature HF theory,2 the expectation value ⟨Φ0|Ĥ|Φ0⟩ of the exact Hamiltonian Ĥ

in a single Slater-determinant wave function Φ0 is adopted as an approximate total energy. This

energy is minimized by varying orbitals in Φ0 with the constraints that the orbitals be orthonormal.

It leads to the Brillouin condition, ϵia = hia +
∑occ.

j ⟨i j||a j⟩ = 0, where i and a are an occupied and

virtual orbital, respectively, and ϵ is the zero-temperature Fock matrix, originally introduced as the

matrix of Lagrange’s undetermined multipliers for the orthonormality constraints. The Brillouin

condition can be replaced by a stronger condition that the Fock matrix ϵ be diagonal, which is jus-

tified by the invariance of the HF wave function and energy with respect to unitary transformations

among occupied orbitals or among virtual orbitals. The eigenvalues of the Fock matrix (“HF orbital

energies”) then have the compelling physical meaning as approximate electron binding energies as

per Koopmans’ theorem.

The finite-temperature generalization of HF theory, known as thermal HF theory,46,47 is pos-

tulated completely differently, even though it reduces correctly to zero-temperature HF theory as

T → 0. There are two Hamiltonians involved: the exact Hamiltonian Ĥ and an auxiliary one-

electron Hamiltonian Ĥ0 ≡
∑
ϵHF

p p̂† p̂, where ϵHF
p is a variational parameter. The state energies

(denoted by EHF1
I ) entering the Boltzmann factor are defined with Ĥ0, i.e.,

EHF1
I ≡ ⟨ΦI |Ĥ0|ΦI⟩ =

occ.∑
i

ϵHF
i . (48)
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The thermal population (density matrix) is then of the one-electron type:

ρHF1
I ≡

e−β(E
HF1
I −µHFNI )∑

I e−β(EHF1
I −µHFNI )

=

∏occ.
i e−β(ϵ

HF
i −µ

HF)∏all
p

(
1 + e−β(ϵHF

p −µ
HF)
) , (49)

On the other hand, the Ith state energy (denoted by EHF2
I ) entering the density-matrix definition of

the grand potential [Eq. (3)] is the expectation value of the exact Ĥ in the Ith Slater determinant,

i.e.,

EHF2
I ≡ ⟨ΦI |Ĥ|ΦI⟩ =

I∑
i

hii +
1
2

I∑
i, j

⟨i j||i j⟩. (50)

The grand potential of thermal HF theory, therefore, makes a hybrid use of these two Hamiltonians

or two definitions of state energies:

ΩHF ≡
∑

I

ρHF1
I

(
EHF2

I − µHFNI

)
+

1
β

∑
I

ρHF1
I ln ρHF1

I (51)

=
∑

p

(
hpp − µ

HF
)

f −p +
1
2

∑
p,q

⟨pq||pq⟩ f −p f −q +
1
β

(
f −p ln f −p + f +p ln f +p

)
, (52)

where

f −p =
1

1 + eβ(ϵHF
p −µ

HF)
; f +p = 1 − f −p . (53)

The minimization of ΩHF by varying ϵHF
p with no constraints then leads to

ϵHF
p = hpp +

∑
q

⟨pq||pq⟩ f −q . (54)

The corresponding formula for the internal energy is written as

UHF =
∑

p

hpp f −p +
1
2

∑
p,q

⟨pq||pq⟩ f −p f −q , (55)
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which is identified as the zeroth-order thermal average ⟨E(0)⟩ + ⟨E(1)⟩.

No equivalent of the Brillouin condition emerges at finite temperature (whose occupied/virtual

distinction of orbitals is incongruent with nonzero temperature in the first place). No single grand

partition function seems identifiable, either, from which all thermodynamic functions can be de-

rived; a grand partition function summing over ⟨ΦI |Ĥ|ΦI⟩ or EHF2
I of Eq. (50) leads to a different

method known as the thermal single-determinant approximation of Kaplan and Argyres74 with

severely limited practical utility. No physical meaning is known for “orbital energies” or ϵHF
p of

thermal HF theory,75 which are temperature dependent (cf. quantized energies are constant of tem-

perature) and have sometimes been invoked to simulate metal-insulator phase transitions somewhat

unquestioningly.76

It has also been revealed59 that ΩHF and UHF disagree with Ω(0) + Ω(1) [Eq. (28)] or U (0) +U (1)

[Eq. (37)], respectively. This is unlike the zero-temperature HF theory, whose energy expression is

that of the first-order Møller–Plesset perturbation theory (E(0) + E(1)).2 This indicates that thermal

HF theory treats different contributions in Ω or U at different levels of perturbation approximation:

It treats energy at the first order, but chemical potential and entropy at the zeroth order. The

differences can thus be identified as

Ω(0) + Ω(1) −ΩHF = −µ(1)N̄, (56)

U (0) + U (1) − UHF = TS (1), (57)

which are generally nonzero. Only when a thermal HF solution is adopted as the reference

(whereupon µ(1) = S (1) = 0), does the first-order finite-temperature MBPT agree with ther-

mal HF theory.47 Nevertheless, all fundamental thermodynamic relationships, Eqs. (7)–(9), are

still satisfied by thermal HF theory,47,77 and its zero-temperature limit is correctly HF theory

(limT→0 UHF = EHF).

Hence, despite its nonlinear derivation logic and inconsistent treatments of different contribu-

tions to ΩHF or UHF, thermal HF theory (and its closely related thermal density-functional the-
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ory78) is remarkably robust and broadly applicable to insulating, semiconducting, and metallic

solids as well as their temperature-dependent energy bands (whose physical meaning is proposed

in the following section). The emergence59 of its total-energy and Fock-matrix expressions in the

finite-temperature MBPT formulas and normal-ordered second-quantized Hamiltonian at nonzero

temperature also underscores the fundamental significance of thermal HF theory.

Thermal Quasiparticle Theory

The immense success of thermal HF theory inspires a thermal quasiparticle theory79 that in-

cludes the effects of electron correlation while keeping to its quasi-one-electron framework. For

instance, an nth-order quasiparticle theory can be postulated by its grand potential of the form,

ΩQP(n) ≡

n∑
i=0

⟨E(i)⟩ − µQP(n)N̄ +
1
β

∑
p

(
f −p ln f −p + f +p ln f +p

)
(58)

with

f −p =
1

1 + eβ
(
ϵQP(n)

p −µQP(n)
) ; f +p = 1 − f −p , (59)

where ϵQP(n)
p s are variational parameters. In line with thermal HF theory, only the energy contribu-

tion is described at the corresponding perturbation order, while the chemical potential and entropy

terms are unchanged from the Fermi–Dirac (zeroth-order) formulas. This ΩQP(n) is then minimized

by varying ϵQP(n)
p , leading to

ϵQP(n)
p =

n∑
i=0

∂⟨E(i)⟩

∂ f −p
. (60)

The zeroth-order thermal quasiparticle theory is identified as Fermi–Dirac theory (ΩQP(0) =

Ω(0), etc.), whereas the first-order instance is thermal HF theory (ΩQP(1) = ΩHF, etc.). At any order,

the theory obeys all fundamental thermodynamic relationships [Eqs. (7)–(9)]. However, not only

are higher-order perturbation corrections to the chemical potential and entropy neglected, but the

anomalous-diagram contributions [e.g., some of the β-multiplied terms in Eq. (34)] to the energy
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are also missing in ΩQP(n). Clearly, this series cannot be convergent towards exactness, but it is

curious to know its performance at lower orders.

The ⟨E(2)⟩ is evaluated in Eq. (31). Substituting it into Eq. (60), we get

ϵQP(2)
p = ϵHF

p + Σ
(2)
pp (61)

with

Σ(2)
pp =

denom.,0∑
q

|Fpq|
2

ϵp − ϵq
f +q −

denom.,0∑
q

|Fpq|
2

ϵq − ϵp
f −q

+

denom.,0∑
q,r

⟨qp||rp⟩Frq + Fqr⟨rp||qp⟩
ϵr − ϵq

f −r f +q

+
1
2

denom.,0∑
q,r,s

|⟨pq||rs⟩|2

ϵp + ϵq − ϵr − ϵs
f −q f +r f +s

−
1
2

denom.,0∑
q,r,s

|⟨pq||rs⟩|2

ϵr + ϵs − ϵp − ϵq
f +q f −r f −s , (62)

defining the second-order thermal quasiparticle theory. This Σ(2)
pp is a finite-temperature general-

ization of the second-order self-energy of MBGF theory.2,60 As T → 0, it reduces to the usual

second-order self-energy formula,2,60 accounting for the leading electron-correlation effects on

electron binding energies or energy bands in solids. Hence, Eq. (60) offers an immediate physical

meaning of “orbital energies” of thermal quasiparticle theory including thermal HF theory: ϵQP
p is

the increase in the internal energy upon infusion of an infinitesimal fraction of an electron in the

pth spin orbital — Janak’s theorem generalized to finite temperature.80,81

Had the definition ofΩQP(n) contained the anomalous-diagram terms (responsible for the Kohn–

Luttinger nonconvergence problem), the corresponding Σ(2)
pp would be divergent for most any sys-

tem as T → 0 (not just when the neutral, ground-state reference is degenerate). Therefore, as it

turns out, the neglect of anomalous-diagram terms is essential for the validity of thermal quasipar-

ticle theory. Whether such a provision is justified formally is an open question, but it may provide
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crucial information about the valid ansätze of finite-temperature MBGF.56,82,83
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Figure 7: Deviation from the exact (finite-temperature FCI) values in the grand potential obtained
by thermal HF theory (“HF”), second-order thermal quasiparticle theory (“QP(2)”), and second-
order finite-temperature MBPT (“MBPT(2)”) as a function of temperature (T ) for the same system
as Fig. 2. Reproduced from Hirata79 with permission from AIP Publishing.

The second-order thermal quasiparticle [QP(2)] theory can, therefore, be viewed as a leading-

order electron-correlated generalization of the highly successful thermal HF theory. It is simi-

lar to finite-temperature MBPT(2) and will have the same computational cost. However, unlike

finite-temperature MBPT(2), QP(2) theory neglects the correlation corrections to the chemical po-

tential and entropy, but instead includes correlation effects on orbital energies and, therefore, on

the Fermi–Dirac distribution functions. Figure 7 examines the comparative performance of these

three methods. At low temperatures (T ≤ 10000 K), the correlation effect on grand potential Ω

is dominated by that on the ground-state energy E0, and both QP(2) theory and finite-temperature

MBPT(2) yield equally accurate results, nearly completely erasing the error in thermal HF theory.

At higher temperatures (T ≥ 100000 K), QP(2) theory begins to trail thermal HF theory, displaying

somewhat poorer performance than finite-temperature MBPT(2), but is superior to thermal HF the-
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ory. At lower temperatures, QP(2) theory seems to be overall best performer for this and another

tiny example (not shown),79 and will be a promising method for electron-correlated energy bands

in a solid.

Outlook

The entire ab initio electronic structure theory awaits finite-temperature generalizations. Among

them, size-extensive theories that can handle solids are prime targets. They include MBPT and

CC theory.5 Finite-temperature CC theory was first explored by Mukherjee and coworkers,84–86

adopting the time-dependent derivation strategy of Bloch and coworkers.29,48,49 Their ansatz was

implemented by White and Chan66 in an algorithm that performs explicit time integration. Finite-

temperature CC theory based on thermofield theory — also a time-dependent approach — has

been proposed by Harsha et al.87–89 Both approaches have been explored by Nooijen and Bao.90,91

Our time-independent derivation strategy described above can be applied to finite-temperature CC

theory, clearly and precisely delineating its grand partition function and various approximations

involved. It should be consistent with infinite partial summations of finite-temperature MBPT dia-

grams, the latter being fully established.59 They should lead to time-independent, sum-over-orbitals

expressions — complementary (or equivalent) to the time-dependent approaches — which will be

applicable to insulating, semiconducting, and metallic solids. They will also admit a general-order

algorithm, proving or disproving its convergence to exactness.

CC theory gives an accurate correlation energy for a metal, which MBPT(n) at any order n ≥ 2

fails by the infrared divergence.45,52 Since it is metallic solids where the thermal excitations of

electrons are most prominent, the appeal of finite-temperature MBPT is significantly diminished by

its inability to treat them, rendering finite-temperature CC theory all the more important. It avoids

the infrared divergence by renormalizing the Coulomb repulsions between electrons, which would

otherwise “pile up” towards infinity.45,52 In fact, this remarkable ability of CC theory to renormalize

or temper particle-particle interactions does not stop at (or start from) electronic structure. CC

theory was introduced, initially as an infinite partial resummation of ring diagrams of MBPT, for

the specific purpose of tempering hardcore repulsive potentials between nucleons in computational
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nuclear physics.92,93 Its eT̂ operator can excise the portion of a reference wave function penetrating

the hardcore region, which would otherwise blow up the energy. This is mathematically equivalent

to modifying the nonintegrable potential into one without the hardcore region.94 For this reason,

the crudest approximation for finite nuclei and nuclear matter is Brueckner–Hartree–Fock theory,

which (despite its name) is a type of CC theory.

Such hardcore potentials are ubiquitous in chemistry. An nonideal gas or liquid of atoms can be

accurately described by inter-atomic interactions of the Lennard-Jones or Buckingham type, which

are hardcore-like and nonintegrable. The Ursell–Mayer cumulant expansion27–34 can temper these

potentials, leading to a progressively more accurate equation of state that describes its gas phase,

liquid phase, and the transition between them as well as the existence of a critical point where the

two phases merge. It is well recognized that the Ursell–Mayer theory is a classical-mechanical

version of quantum-mechanical CC theory.93 Hence, finite-temperature CC theory has a potential

of becoming chemical theory for everything encompassing electrons in insulating, semiconducting,

and metallic solids and nonideal gases and liquids of atoms, as a start, and all the rest ultimately.

This exciting prospect of the unification may be achieved by fully establishing the whole hierarchy

of converging finite-temperature CC theory series, developing a general algorithm to determine

tempered potentials, and elucidating the precise relationships between finite-temperature CC and

Ursell–Mayer theory and how quantum effects are systematically incorporated in the latter. The

general, versatile derivation strategy for finite-temperature MBPT described herein will be crucial

for this development.
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(19) Keçeli, M.; Hirata, S. Fast coupled-cluster singles and doubles for extended systems: Ap-

plication to the anharmonic vibrational frequencies of polyethylene in the Γ approximation.

Phys. Rev. B 2010, 82, 115107.

(20) McClain, J.; Sun, Q. M.; Chan, G. K. L.; Berkelbach, T. C. Gaussian-based coupled-cluster

theory for the ground-state and band structure of solids. J. Chem. Theory Comput. 2017, 13,

1209–1218.

(21) Wang, X.; Berkelbach, T. C. Excitons in solids from periodic equation-of-motion coupled-

cluster theory. J. Chem. Theory Comput. 2020, 16, 3095–3103.

(22) Hirata, S.; Shigeta, Y.; Xantheas, S. S.; Bartlett, R. J. Helical organic and inorganic polymers.

J. Phys. Chem. B 2023, 127, 3556–3583.

(23) Vo, E. A.; Wang, X.; Berkelbach, T. C. Performance of periodic EOM-CCSD for bandgaps

of inorganic semiconductors and insulators. J. Chem. Phys,. 2024, 160, 044106.

(24) Phillips, P.; Choy, T. P.; Leigh, R. G. Mottness in high-temperature copper-oxide supercon-

ductors. Rep. Prog. Phys. 2009, 72, 036501.

(25) Heeger, A. J.; Kivelson, S.; Schrieffer, J. R.; Su, W. P. Solitons in conducting polymers. Rev.

Mod. Phys. 1988, 60, 781–850.

(26) Kresin, V. Z.; Morawitz, H.; Wolf, S. A. Superconducting State: Mechanisms and Properties,

1st ed.; Oxford University Press: Oxford, 2014.

(27) Ursell, H. D. The evaluation of Gibbs’ phase-intergral for imperfect gases. P. Camb. Philos.

Soc. 1927, 23, 685–697.

37



(28) Mayer, J. E.; Montroll, E. Molecular distribution. J. Chem. Phys. 1941, 9, 2–16.
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