

1 Diamine Chelates for Increased Stability in Mixed Sn–Pb and

2 All-Perovskite Tandem Solar Cells

3 **Authors:** Chongwen Li^{1,4†}, Lei Chen^{2†}, Fangyuan Jiang^{3†}, Zhaoning Song^{2†}, Xiaoming
4 Wang², Adam Balvanz⁴, Esma Ugur⁵, Yuan Liu⁴, Cheng Liu⁴, Aidan Maxwell¹, Hao Chen¹,
5 Yanjiang Liu¹, Zaiwei Wang¹, Pan Xia¹, You Li², Sheng Fu², Nannan Sun², Corey R.
6 Grice^{2,6}, Xuefei Wu⁷, Zachary Fink^{7,8}, Qin Hu⁷, Lewei Zeng¹, Euidae Jung¹, Junke Wang¹,
7 So Min Park¹, Deying Luo⁹, Cailing Chen¹⁰, Jie Shen¹⁰, Yu Han¹⁰, Carlo Andrea Riccardo
8 Perini¹¹, Juan-Pablo Correa-Baena¹¹, Zheng-Hong Lu⁹, Thomas P. Russell^{7,8,12}, Stefaan De
9 Wolf⁵, Mercouri G. Kanatzidis⁴, David S. Ginger³, Bin Chen^{1,4*}, Yanfa Yan^{2*}, Edward H.
10 Sargent^{1,4,13*}

11 Affiliations:

12 ¹Department of Electrical and Computer Engineering, University of Toronto, Toronto,
13 Ontario M5S 1A4, Canada.

14 ²Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606,
15 United States.

16 ³Department of Chemistry, University of Washington, Seattle, Washington 98195, United
17 States.

18 ⁴Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United
19 States.

20 ⁵King Abdullah University of Science and Technology (KAUST), KAUST Solar Center
21 (KSC), Physical Sciences and Engineering Division (PSE), Thuwal 23955-6900,
22 Kingdom of Saudi Arabia.

23 ⁶Center for Materials and Sensors Characterization, The University of Toledo, Toledo,
24 OH 43606, United States.

25 ⁷Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley,
26 California 94720, United States.

27 ⁸Polymer Science and Engineering Department, University of Massachusetts Amherst,
28 Amherst, Massachusetts 01003, United States.

29 ⁹Department of Materials Science and Engineering, University of Toronto, Toronto,
30 Ontario M5G 3E4, Canada.

31 ¹⁰Advanced Membranes and Porous Materials Center, Physical Science and Engineering
32 Division, KAUST, Thuwal 23955-6900, Saudi Arabia.

33 ¹¹School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta,
34 Georgia 30332, United States.

35 ¹²Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1
36 Katahira, Aoba, Sendai 980-8577, Japan.

37 ¹³Department of Electrical and Computer Engineering, Northwestern University,
38 Evanston, Illinois 60208, United States.

39 †These authors contributed equally to this work.

40 *Correspondence: bin.chen@northwestern.edu, yanfa.yan@utoledo.edu,

41 ted.sargent@northwestern.edu

42 **Abstract**

43 Perovskite tandem solar cells show promising performance but non-radiative
44 recombination and its progressive worsening with time, especially in the mixed Sn–Pb low-
45 bandgap layer, limit performance and stability. Here, we find that mixed Sn–Pb perovskite
46 thin films exhibit a compositional gradient, with an excess of Sn on the surface – and we
47 show this gradient exacerbates oxidation and increases the recombination rate. We find
48 that diamines preferentially chelate Sn atoms, removing them from the film surface and
49 achieving a more balanced Sn:Pb stoichiometry, making the surface of the film resistive to
50 the oxidation of Sn. The process forms an electrically resistive low-dimensional barrier
51 layer, passivating defects and reducing interface recombination. Further improving the
52 homogeneity of the barrier layer using 1,2-diaminopropane results in more uniform
53 distribution and passivation. Tandems achieve a power conversion efficiency of 28.8%.
54 Encapsulated tandems retain 90% of initial efficiency following 1000 hours of operating
55 at the maximum power point under simulated one-sun illumination in air without cooling.

56 **Main**

57 All-perovskite tandem solar cells have attracted attention for their rapid rise in power
58 conversion efficiency (PCE) and their potential to surpass the detailed balance limit for
59 single junction solar cells¹⁻⁶. Even with the impressive advances in recent years^{7,8}, there
60 remains room to increase further their performance and achieve the durability required for
61 commercial impact⁹.

62 State-of-art all-perovskite tandems are built up from perovskite sub-cells based in the
63 inverted *p-i-n* architecture.¹⁰⁻¹² However, a defective surface often emerges following
64 annealing, leading to a high rate of surface recombination of charge carriers at the
65 perovskite/electron transport layer (ETL) interface¹³⁻¹⁵. This recombination is evidenced in
66 a significant reduction in photoluminescence quantum yield (PLQY) upon contact with
67 C₆₀¹³, the ETL for *p-i-n* subcells in tandems. Losses in device performance are particularly
68 prominent in mixed tin (Sn) – lead (Pb) subcells, in which surface Sn²⁺ oxidation has been
69 reported to induce deep trap states that increase surface recombination and dark saturation
70 current density by two orders of magnitude¹⁶⁻¹⁸. The defective surface contributes further
71 to instability, limiting the operating stability of tandems¹⁹.

72 Researchers have utilized additive engineering and post-treatment techniques to passivate
73 surface defects, suppress Sn²⁺ oxidation and regulate crystallization dynamic in Sn-
74 containing perovskite films^{3,20-26}. These strategies have improved device performance in
75 mixed Sn–Pb single-junction cells and tandems, but the susceptibility of Sn²⁺ at the surface
76 to oxidation remains a challenge.

77 We find in the present study that diamines bind preferentially with Sn atoms, removing
78 them from the film surface and balancing the Sn:Pb ratio, thereby improving resistance to
79 oxidation. This process leads to the formation of diamine chelates that reduce interface
80 recombination. We then strive to improve the homogeneity of the spatial distribution of the
81 chelates via the use of 1,2-diaminopropane, this resulting in more uniform passivation. This
82 enables a PCE of 23.9% for mixed Sn–Pb perovskite solar cells (PSCs). Mixed Sn–Pb
83 PSCs (encapsulated) show improved operating stability in air, retaining 90% of initial PCE
84 after 650 hours of operation under maximum power point (MPP) tracking under simulated
85 one-sun illumination. All-perovskite tandem solar cells made using a diamine-treated
86 mixed Sn-Pb subcell and a 1.78 eV wide-bandgap subcell demonstrate a PCE of 28.8%
87 and a T90 lifetime of 1000 hours.

88 **Diamine chelates for the inhibition of oxidation**

89 The formation of a Sn-rich compositional gradient at the surface could cause this interface
90 to be especially prone to Sn^{2+} oxidation. We measured the Sn:Pb atomic ratio of
91 $\text{Cs}_{0.05}\text{FA}_{0.7}\text{MA}_{0.25}\text{Sn}_{0.5}\text{Pb}_{0.5}\text{I}_3$ perovskite films using in-situ X-ray photoelectron
92 spectroscopy (XPS) and saw an Sn-rich compositional gradient with the Sn:Pb ratio equal
93 to $\sim 4:1$ at the surface (**Supplementary Fig. 1** and **Fig. 2**). We aged a mixed Sn–Pb film
94 in air for 1 hour and found that $\sim 35\%$ of Sn is in the desired Sn^{2+} oxidation state, while the
95 remaining $\sim 65\%$ is in the undesired Sn^{4+} oxidation state (**Supplementary Fig. 3**) known
96 to produce p-type self-doping and an increased density of defect states^{16,27,28}.

97 We then contemplated a means to preserve the Sn:Pb ratio at the surface compared to in
98 bulk. Diamines are bidentate chelating ligands possessing strong coordination with Pb^{29} .

99 Since Sn has stronger Lewis acidity than Pb, we sought to chelate Sn/Pb atoms in mixed
100 Sn–Pb perovskites using diamines and selectively remove the excess Sn at the surface
101 (**Supplementary Table 1**).

102 We examined chelation using ethylenediamine (EDA), the liquid diamine that shows the
103 most simplicity in molecular structure (**Supplementary Fig. 4a**). We prepared a mixed
104 Sn–Pb film post-treated with EDA and evaluated its ability to remove residual Sn using
105 XPS. We observed a slight decrease in the Sn:Pb ratio from ~ 4:1 in the pristine mixed Sn–
106 Pb film (referred to hereafter as control) to ~ 2:1 in the film treated with EDA
107 (**Supplementary Fig. 5** and **Fig. 1a**), indicating the removal of surface residual Sn with
108 EDA.

109 We evaluated the ability of diamine chelation to improve the oxidation resistance of mixed
110 Sn–Pb thin films. XPS analysis reveals that in the control film, Sn⁴⁺ rapidly reaches ~ 65%
111 after storing for 1 hour and then stabilizes at ~ 80% thereafter (**Supplementary Fig. 3**).
112 EDA suppresses Sn oxidation, with only ~ 2% of Sn in its Sn⁴⁺ oxidation state after 1 hour
113 (**Supplementary Fig. 6**). However, in the EDA-treated film, Sn⁴⁺ gradually increases to ~
114 10% after 48 hours (**Fig. 1b**), which may indicate undesirable surface treatment that
115 reduces long-term resistance to oxidation.

116 We used scanning electron microscopy (SEM) to track surface morphological changes.
117 Control films show crystalline grain domains with bright crystals, likely SnF₂/SnI₂ residues
118 at grain boundaries (**Fig. 1d**)^{30,31}. In contrast, films treated with EDA exhibit a distinct
119 amorphous morphology, with small particles that are likely chelates randomly aggregated
120 on grains (**Fig. 1e**). The stability of chelates was assessed by preparing films of SnI₂ and

121 SnI₂-EDA for XPS analysis. We observed significantly reduced atomic ratios of both Sn
122 and I oxidation states (**Supplementary Fig. 7**), indicating improved stability against
123 atmospheric oxygen. We offer that the inhomogeneous/aggregated EDA chelates on grains
124 may reduce the ability to provide film-wide resistance to oxidation.

125 We extended our studies of diamine chelation to analogous diamines but having longer
126 chain lengths: 1,4-diaminobutane and 1,5-diaminopentane (**Supplementary Fig. 4**). We
127 saw using XPS reduced surface Sn content after diamine chelation (**Supplementary Fig.**
128 **8**). These diamines also contribute to suppressed Sn oxidation, while exhibiting gradual
129 oxidation over time (**Supplementary Fig. 9** and **10**), which may result from undesirable
130 surface chelate distribution (**Supplementary Fig. 11**).

131 To understand the structure of chelates and the design principles underpinning the use of
132 functional diamines, we grew single crystals to assess local atomic arrangement of the
133 chelates.³² We attempted the synthesis of EDA-SnI₂, but the compound consisted of
134 insoluble fine powders with no discernible diffraction pattern, possibly due to the oxidation
135 of Sn during synthesis. Since Pb- and Sn-based single crystals are isostructural,^{33,34} we
136 predict that SnI₂-EDA and PbI₂-EDA crystals are also isostructural. We prepared
137 PbI₂(EDA)₂ crystals and found that they exhibit a polymeric chain structure (**Fig. 1g**),
138 where one EDA molecule chelates one Pb atom, while the other EDA is shared by the
139 adjacent two Pb atoms (**Supplementary Fig. 12**, **Supplementary Note 1** and
140 **Supplementary Table 2 to 4**). The ribbon-like structure tends to aggregate and localize on
141 perovskite grains, offering an account of the small particles seen in SEM (**Fig. 1e**) and
142 accounting for the progressive oxidation of Sn (**Fig. 1b**).

143 To overcome this issue, we moved to using a methyl group attached to one of the nitrogen
144 atoms in EDA (**Supplementary Fig. 4**), our goal to introduce steric hindrance to hinder
145 the formation of the chain structure. This diamine, 1,2-diaminopropane (DAP), in a given
146 $\text{PbI}_2(\text{DAP})_2$ unit cell chelates the same Pb atom, resulting in an isolated non-perovskite
147 structure (Fig. **1h** and **Supplementary Fig. 13**). These isolated DAP chelates are not
148 constrained by the rigid chain-like crystal lattice and are thus able to distribute more evenly
149 on grains with the absence of aggregated particles seen in the film treated with EDA (Fig.
150 **1f**). The improvement in the homogeneity of chelate distribution enables mixed Sn–Pb
151 films with a more balanced Sn:Pb ratio of $\sim 1:1$ (**Fig. 1a**) and much improved long-term
152 resistance to oxidation, stabilizing Sn^{4+} content at $\sim 5\%$ after 12 hours and thereafter (**Fig.**
153 **1c** and **Supplementary Fig. 14**).

154 **Surface reconstruction and passivation**

155 We turned to study in more detail on the diamine treatment reconstructs the Sn–Pb
156 perovskite surface. XPS shows that the Sn and Pb-associated peaks shift to lower energies
157 following diamine treatment (**Supplementary Fig. 15**), while carbon remains unchanged.
158 This suggests the transfer of electrons from the N of the diamines to Sn and Pb, and the
159 chelation of the metal atoms. Using grazing-incidence wide-angle X-ray scattering
160 (GIWAXS), we observed q_r peaks at 0.78 and 0.64 \AA^{-1} with the EDA-treated sample and
161 0.70 and 0.45 \AA^{-1} for the DAP-treated sample, indicating the formation of ribbon-like and
162 isolated chelate structures in EDA and DAP samples (**Supplementary Fig. 16** and
163 **Supplementary Note 2**). The thickness of the chelates was further estimated using
164 sputtering XPS to be in the range $\sim 5\text{--}7$ nanometers (**Supplementary Figs. 17** and
165 **Supplementary Note 3**). We speculate these layers could involve a mixture of diamine-

166 metal chelation products, as well as low-dimensional phases resulting from the reaction of
167 diamines with formamidinium.

168 Next we investigated how reconstruction affects the surface properties. We used
169 conductive atomic force microscopy (cAFM) to investigate surface passivation and local
170 resistance. The domain interiors of control films exhibited > 0.1 nA current at 1.5V bias,
171 while the interfaces between domains show much lower conductance (**Fig. 2a**). After
172 diamine treatment, the entire film surface becomes less-conductive (**Fig. 2b** and **2c**),
173 resulting from the reduced electronic dimensionality of chelates, and possible products of
174 reactions between the diamines and FA.

175 We analyzed the map of current extraction with the aid of cAFM. A typical control sample
176 shows bimodal current distribution (**Supplementary Fig. 18a**), with ~30% of pixels
177 showing a current < 0.1 nA and ~60% of pixels having a current > 1 nA, corresponding to
178 the non-conductive interfaces and conductive domains. In the EDA-treated sample, we
179 observed a broader current distribution, but with only 5% of pixels reaching a current > 1
180 nA (**Supplementary Fig. 18b** and **18c**). This decrease in surface conductivity, along with
181 the remaining conductive regions, correlates with the above-noted aggregation on grains,
182 the result of which is that some areas remained untreated. DAP-treated samples have a
183 narrower current distribution, with almost no pixels having current above 1 nA
184 (**Supplementary Fig. 18d**), showing more uniform chelate distribution and passivation.

185 A homogenized spatial conductivity distribution was observed after the deposition of the
186 C60 layer (**Supplementary Fig. 19**), indicating that the modest percentage of conductive
187 regions on the DAP-treated perovskite surface allows efficient current extraction through

188 the conductive regions without sacrificing device performance. The lower bound of the
189 conductive pixels was suggested to be ~10% of the perovskite surface before negatively
190 impacting the solar cell performance (**Supplementary Fig. 20** and **Note 4**).

191 In photoluminescence (PL) characterization, diamine-treated films exhibit blue-shifted
192 emission peaks and increased peak intensities compared to controls (**Supplementary Fig.**
193 **21** and **Fig. 2g**). The surface distribution of quasi-Fermi level splitting (QFLS) of the
194 samples are shown in QFLS maps in **Fig. 2d-f**. The values are 0.827 ± 0.022 eV, $0.898 \pm$
195 0.008 eV and 0.902 ± 0.005 eV for control, EDA- and DAP-treated films, respectively (**Fig.**
196 **2h**). The PL decay of the mixed Sn–Pb films was measured using time-correlated single
197 photon counting (**Supplementary Fig. 22**). For the sample stack of glass/perovskite, the
198 carrier lifetime increased from 1.37 μ s for the control sample to 3.16 and 3.43 μ s for the
199 EDA- and DAP-treated films, and for the sample stack of glass/perovskite/C₆₀, the carrier
200 lifetime decreased from 113.8 ns to 85.1 and 55.8 ns, which are indicative of reduced
201 surface recombination and accelerated charge extraction at the perovskite/C₆₀ interface.

202 PLQY measurements on half-cells with a C₆₀ layer we used to assess ability to reduce
203 interfacial recombination. EDA-treated films showed a factor of 3 improvement in PLQY
204 (**Fig. 2i**), with a factor of 4 improvement in the case of DAP. This increase in the half stacks
205 is consistent with the formation of electrically-resistive chemical barrier layers, which
206 could be beneficial for electronically decoupling the bulk perovskite from the fullerene
207 layer as has been shown to improve PLQY and open circuit voltage (V_{OC}) for other
208 insulating layers³⁵.

209 **Stability of mixed Sn–Pb perovskite solar cells**

210 We fabricated 1.25 eV $\text{Cs}_{0.05}\text{FA}_{0.7}\text{MA}_{0.25}\text{Sn}_{0.5}\text{Pb}_{0.5}\text{I}_3$ cells with the architecture shown in
211 **Supplementary Fig. 23**. The optimal concentration of EDA and DAP in chlorobenzene
212 was found to be 0.05 $\mu\text{L}/\text{mL}$ and 0.25 $\mu\text{L}/\text{mL}$ (**Supplementary Fig. 24**). The band
213 alignment was reported by the ultraviolet photoelectron spectroscopy (**Supplementary Fig.**
214 **25**). After DAP treatment, the chelate barrier layer induces a more n-type doped perovskite
215 film surface with the work function upshifted from -4.81 eV to -4.45 eV, and this we expect
216 should facilitate electron extraction and reduce interface non-radiative recombination,
217 resulting in improved V_{OC} . **Fig. 3a** and **Supplementary Fig. 26** compare the current
218 density–voltage (J – V) curves of the highest-performing cells (details in **Supplementary**
219 **Table 5**). The V_{OC} increased from 0.81 V for the control device to 0.90 V for the DAP-
220 treated device, contributing to an increased PCE of 23.90% with improved reproducibility
221 (**Fig. 3a** and **3b**, and **Supplementary Fig. 27**). The J – V current density of $32.5 \text{ mA}/\text{cm}^2$
222 agrees with the value of $33.0 \text{ mA}/\text{cm}^2$ measured from integrated external quantum
223 efficiency (EQE; **Supplementary Fig. 28**). The improved performance of DAP-treated
224 devices is consistent with reduced interface recombination at the perovskite/C60 interface
225 (**Supplementary Fig. 21** and **Fig. 22**, **Fig. 2g** and **2i**).

226 We performed stability tests on the control and DAP-treated mixed Sn–Pb PSCs. 1,3-
227 Bis(diphenylphosphino)propane and Cr/Cu electrodes were used for interface toughness
228 and to reduce electrode corrosion³⁶. The effect of DAP barrier layer in improving resistance
229 against oxidation was first tested by aging unencapsulated solar cells in ambient air: the
230 DAP-treated Sn–Pb cell retained ~ 90% of its initial PCE after 48 hours in ambient air with
231 a relative humidity of approximately 25%, while the control PCE dropped to < 20% of its
232 initial value (**Supplementary Fig. 29**).

233 We then performed accelerated thermal stress tests at 85°C on a hotplate in the glovebox
234 and measured PCEs periodically to test thermal durability. We tested 5 pixels at each
235 condition, and the average PCE of control devices diminished to < 70% of their initial value
236 following 96 hours; whereas it retained ~ 90% in the DAP-treated devices (**Fig. 3d**). The
237 decomposition of surface species has been reported to limit thermal stability of mixed Sn–
238 Pb films¹⁰. We calculated decomposition energy - that required to decompose a compound
239 into its precursors. The decomposition energies of PbI₂(DAP)₂ was found to be 2.6 eV/f.u.,
240 higher than the -0.111 and 0.070 eV/f.u. reported previously for CH₃NH₃PbI₃ and
241 CH₃NH₃SnI₃ (**Fig. 3c** and **Supplementary Table 6**)^{37,38}, suggestive of increased stability
242 of chelates. As these stable chelates are evenly distributed on the film surface, we propose
243 that they cover and protect the surface against thermal stress.

244 We further tested the operating stability of solar cells under continuous 1-sun illumination
245 in an N₂ environment at a temperature of ~ 45°C. The PCE of a control mixed Sn–Pb PSC
246 decreased to < 90% of its initial PCE after 90 hours, while a DAP-treated PSC showed
247 much-improved stability under light, retaining 90% of its initial PCE after 650 hours (**Fig.**
248 **3e**). Further actions, such as replacing acidic PEDOT:PSS, will be needed to enable more
249 stable mixed Sn–Pb PSCs under rigorous thermal and light stresses.

250 **Tandem performance and stability**

251 We fabricated tandems (**Fig. 4a to 4c**) that achieved champion 28.83 (28.42)% with a *V_{oc}*
252 of 2.18 (2.19) V, along with a *J_{SC}* of 15.57 (15.59) mA/cm² and FF of 84.8 (83.4)% under
253 reverse (forward) scan (**Supplementary Table 7**). Stabilized power output (SPO) reached
254 28.5% in 10 tandems (**Supplementary Fig. 30**) with current densities consistent with

255 EQEs (**Fig. 4d**). $J-V$ scans from Japan electrical safety & environment technology
256 laboratories (JET) delivered a PCE of 27.4 % (**Fig. 4e, Supplementary Fig. 31** and **Note**
257 **5**). 1 cm² tandems achieved a PCE of 27.53 (27.41)% with V_{OC} of 2.18 (2.18) V, J_{SC} of
258 15.82 (15.71) mA/cm² and FF of 79.8 (79.9)% (**Supplementary Fig. 32**).

259 We tested the stability using MPP tracking in air and under simulated 1-sun illumination
260 (**Fig. 4f**). An encapsulated tandem retained 90% (T90) of its original PCE after 1000 hours
261 continuous operation in ambient air without cooling, surpassing the 233 hours of the
262 control device. We compare our devices with the highest-performing and most-stable
263 previously-published all-perovskite tandems in **Supplementary Table 8**.

264 **Methods**

265 Materials

266 Formamidinium iodide (FAI, 99.999%), methylammonium iodide (MAI, 99.999%) and
267 lead iodide (PbI₂, 99.999%) were purchased from Advanced Election Technology Co., Ltd.
268 Tin iodide (SnI₂, 99.99%), tin fluoride (SnF₂, 99%), cesium iodide (CsI, 99.999%), cesium
269 bromide (CsBr, 99.999%) and 1,3-Bis(diphenylphosphino)propane (DPPP, 97%) were
270 purchased from Sigma-Aldrich. C₆₀, bathocuproine (BCP), [4-(3,6-Dimethyl-9H-carbazol-
271 9-yl)butyl]phosphonic acid (Me-4PACz, >99.0%), guanidinium thiocyanate (GuaSCN,
272 ≥99%) and 1,3-propane-diammonium iodide (PDAI₂) were purchased from Xi'an Polymer
273 Light Technology. Formamidinium bromide (FABr, >99.99%) and 4-fluoro-
274 phenethylammonium bromide (4F-PEABr) were purchased from Greatcell Solar
275 Materials.

276 Ethylenediamine (EDA, $\geq 99\%$), 1,2-diaminopropane (DAP, 99%), 1,4-diaminobutane
277 (99%), 1,5-diaminopentane (95%), dimethylsulfoxide (DMSO, $\geq 99.9\%$), anisole (99.7%),
278 chlorobenzene (CB, $\geq 99.5\%$), isopropanol (IPA, $\geq 99.5\%$), toluene (99.8%),
279 dimethylformamide (DMF, $\geq 99.5\%$) were purchased from Sigma-Aldrich. Nickel oxide
280 (NiO_x) nanoparticle solution was purchased from Avantama. Poly(3,4-
281 ethylenedioxythiophene) polystyrene sulfonate solution (PEDOT: PSS, Al-4083) was
282 purchased from Ossila.

283 Tetrakis(dimethylamino) tin (iv) (99.99%-Sn, 50-1815 Tin) was purchased from Strem
284 Chemicals. Commercial indium tin oxide (ITO) glasses ($15 \Omega/\text{sq}$) with 25 mm x 25 mm
285 dimension were purchased from Suzhou ShangYang Solar Technology Co., Ltd. Copper,
286 silver and gold were purchased from Kurt J. Lesker. UV-curable epoxy was purchased
287 from Luminescence technology corp.

288 Preparation of precursor solutions

289 *Low-bandgap perovskite solution:* Low-bandgap perovskite precursor solution (1.8 M,
290 $\text{Cs}_{0.05}\text{FA}_{0.7}\text{MA}_{0.25}\text{Sn}_{0.5}\text{Pb}_{0.5}\text{I}_3$) was prepared by dissolving CsI (23.4 mg), FAI (216.7 mg),
291 MAI (71.55 mg), SnI_2 (335.3 mg) and PbI_2 (414.9 mg) in mixed solvent of DMF (750 μL)
292 and DMSO (250 μL). GuaSCN (4 mg), SnF_2 (14.1 mg), and 4F-PEABr (1.5 mg) were
293 added to the precursor solution as additives.

294 *Wide-bandgap perovskite solution:* Wide-bandgap perovskite precursor solution (1.2 M,
295 $\text{FA}_{0.8}\text{Cs}_{0.2}\text{Pb}(\text{I}_{0.63}\text{Br}_{0.37})_3$) was prepared by dissolving CsI (34.3 mg), CsBr (18.7 mg), FAI
296 (91 mg), FABr (44 mg), PbBr_2 (143.3 mg) and PbI_2 (327.1 mg) in mixed solvent of DMF
297 (800 μL) and DMSO (200 μL).

298 *Post-treatment solutions:* EDA and DAP were dissolved in CB with varying concentrations
299 (EDA: 0.025 uL/mL, 0.05 uL/mL, 0.075 uL/mL and 0.1 uL/mL; DAP: 0.2 uL/mL, 0.25
300 uL/mL, 0.3 uL/mL and 0.5 uL/mL). 1 mg/mL PDAI₂ was dissolved in mixed solvent of
301 IPA and CB with the volume ratio of 2:1.

302 *Hole-transport material solutions:* NiO_x nano-particle solution was diluted to 0.025 wt%
303 in ethanol. Me-4PACZ was dissolved in ethanol with the concentration of 0.3 mg/mL.

304 All perovskite precursor solutions were dissolved using a magnetic stir bar at room
305 temperature without annealing. Before using, perovskite precursor solutions were filtered
306 by a 0.22 μ m polytetrafluoroethylene membrane.

307 Preparation of solar cells

308 The prepatterned ITO substrates were cleaned by ultrasonication in diluted Micro-90
309 detergent, deionized water, acetone, and isopropanol for 15 min, respectively. Before
310 making thin films, the ITO substrates were cleaned using UV-ozone cleaner for 20 minutes.
311 The temperature of the hotplates used for annealing were calibrated using a thermocouple
312 before serving.

313 *Low-bandgap perovskite solar cells:* Low-bandgap perovskite solar cells have a device
314 configuration of glass/ITO/PEDOT:PSS/Cs_{0.05}FA_{0.7}MA_{0.25}Sn_{0.5}Pb_{0.5}I₃/C₆₀/ALD-SnO₂/Ag,
315 where ITO, PEDOT:PSS and ALD stand for indium tin oxide, poly(3,4-
316 ethylenedioxythiophene) polystyrene sulfonate, and atomic layer deposition, respectively.
317 PEDOT:PSS solution was spin-coated on cleaned ITO substrates at 4000 rpm for 25 s and
318 dried at 150 °C for 20 min. Perovskite precursor solutions (60 uL) were then spin-coated
319 on the ITO/PEDOT:PSS substrates in the glovebox at 1000 rpm for 10 s and then 3800

320 rpm for 40 s. Toluene (350 uL) was applied drop-wise at 30 s onto the spinning substrate
321 during the spin-coating. The perovskite films were annealed at 100 °C for 10 minutes for
322 crystallization. 60 uL of diamine solution was then applied on the annealed films at 3000
323 rpm for 25 s, followed by an annealing process at 100 °C for 5 minutes. The perovskite
324 films were then transferred to a thermal evaporation chamber for the C₆₀ (25 nm)
325 deposition at the rate of 0.2 Å/s, followed by the SnO₂ (5 nm) deposition in an ALD
326 chamber. Ag (80 nm) or Cu (80 nm)/Cr (5 nm) electrodes were deposited in a thermal
327 evaporation chamber for efficiency or stability tests.

328 *Wide-bandgap perovskite solar cells and all-perovskite tandem solar cells:* NiO_x and Me-
329 4PACZ solutions were spin-coated on cleaned ITO substrates at 4000 rpm for 25 s,
330 subsequently, and then annealed on a 100 °C hotplates for 10 minutes. DPPP solution (1
331 mg/mL in DMF) was spin-coated on the ITO/NiO_x/Me-4PACZ substrates at 5000 rpm for
332 25 s, and then annealed at 100 °C for 2 minutes. Perovskite precursor solutions (60 uL)
333 were then spin-coated on the substrates in the glovebox at 3700 rpm for 40 s. Anisole (150
334 uL) was applied drop-wise at 15 s onto the spinning substrate during the spin-coating. The
335 perovskite films were annealed at 110 °C for 15 minutes for crystallization. The deposition
336 of electron transport layers and electrodes followed the same procedures for low-bandgap
337 perovskite solar cells. For assembling all-perovskite tandem solar cells, we deposited 1 nm
338 Au on the SnO₂ layer on wide-bandgap subcells as the recombination layer, and then
339 deposited the low-bandgap subcells following the same procedure as discussed above.
340 Finally, Ag (80 nm) or Cu (80 nm)/Cr (5 nm) electrodes were deposited in a thermal
341 evaporation chamber for efficiency or stability tests. The solar cells were encapsulated with
342 cover glasses and UV-curable epoxy before efficiency and stability tests.

343 Solar cell characterizations

344 The J - V characteristics were measured using a Keithley 2400 source meter under
345 illumination from a solar simulator (Newport, Class AAA) with the irradiation intensity of
346 100 mW/cm^2 AM 1.5G (checked with a calibrated reference Si solar cell from Newport).
347 J - V curves measurement with a scanning rate of 100 mV/s (voltage step of 10 mV and
348 delay time of 100 ms) and stabilized power output (SPO) measurement were conducted in
349 nitrogen atmosphere without cooling. The aperture shade mask (0.049 cm^2 for small-area
350 and 1.05 cm^2 for large-area devices) determined the active area of the solar cell. Maximum
351 power point (MPP) tracking measurements were conducted using a Candlelight stability
352 test station in the air and under a white light LED solar simulator (**Supplementary Fig.**
353 **33**) with simulated AM 1.5G spectrum. The humidity of the measurement environment
354 ranged from 40 to 60%. The curves drawn on top of efficiency and stability data in Fig. 3d,
355 Supplementary Fig. 20d and 29 were guides to the eye.

356 A quantum efficiency system (PV Measurements Inc., model IVQE8-C QE system) was
357 used to measure the quantum efficiency of the PSCs. A standard Si solar cell was used as
358 the reference for calibration. For EQEs of low-bandgap and wide-bandgap subcells, we
359 used 530 nm and 705 nm lasers to saturate the other junction during EQE measurement,
360 respectively.

361 DFT calculations

362 Density functional theory calculations were performed using the VASP code^{1,2} with
363 projector augmented-wave³ potentials. A plane-wave energy cutoff of 600 eV and Γ
364 centered $4 \times 4 \times 2$ (PbI₂(EDA)2) and $2 \times 2 \times 2$ (PbI₂(DAP)2) k meshes were used. The
365 exchange-correlation interactions were treated with the generalized gradient approximation

366 of the Perdew-Burke-Ernzerhof (PBE) parametrization⁴. Grimme's D3 correction⁵ were
367 also included to deal with the van der Waals interactions. Both the lattice and atomic
368 positions are relaxed with force tolerance of 0.01 eV/Å on each atom.

369 Single crystals analysis

370 Suitable single crystals were placed under Paratone-N oil and transferred to an optical
371 microscope whereby high-quality crystals were mounted onto a goniometer head and
372 placed onto a goniometer of a single crystal diffractometer. Data for (EDA)₂PbI₂ were
373 collected on a XtaLAB Synergy diffractometer which uses a micro-focus sealed X-ray tube
374 PhotonJet (Mo K_α: $\lambda = 0.71073\text{\AA}$) as the X-ray source and a Hybrid Pixel Array Detector
375 (HyPix). The data for (EDA)₂PbI₂ was then reduced in the CrysAlisPro (Rigaku) software
376 package. Data for (DAP)₂PbI₂ were collected on a STOE IPDS II 2 circle diffractometer
377 which uses a sealed X-ray tube with X-ray fiber optics (Mo K_α: $\lambda = 0.71073\text{\AA}$) for
378 diffraction and a 34 cm diameter image plate detector. The data for (DAP)₂PbI₂ was
379 reduced in the X-area software package (STOE) using a semi-empirical absorption
380 correction, outlier rejection, and frame scaling as implemented in LANA³⁹. The reflection
381 file for both compounds were then imported into Olex²⁴⁰. A structural solution was
382 achieved though the intrinsic phrasing method, as used in SHELXT⁴¹, and the structure
383 was further refined using a least squares method on F^2 as implemented in SHELXL⁴². The
384 crystal structures were then visualized in Vesta for further structural analysis⁴³.

385 X-ray photoelectron spectroscopy (XPS)

386 High-resolution XPS was measured with a 140 monochromatic aluminum X-ray source
387 (model 5600, PerkinElmer). All the charges were referenced to the Fermi edge and the 4f

388 core level of Au (99.9999% pure) for calibration. The curves drawn on top of data in
389 **Fig.1b, 1c, and Supplementary Fig. 3f, 9f and 10f** were guides to the eye.

390 XPS depth profiling

391 The XPS measurements were carried out on the Thermo Fisher ESCALAB Xi⁺ system. XPS
392 measurements were acquired using a monochromatic Al K α source ($h\nu = 1486.6$ eV) with
393 a pass energy of 20 eV. The sample was transferred into the XPS chamber via a vacuum
394 transfer module to avoid air exposure. The XPS spectra energy positions were calibrated
395 using a cleaned Au sample. For XPS depth profiling measurements, samples were layer-
396 by-layer sputtered off using a gas ion cluster beam with 2000 sizes at 4 keV. The sampling
397 point was at the center of the sputtered crater (size: 1×1 mm²). All the characteristic
398 elements included in perovskites and hole transport layers are the fingerprint to distinguish
399 each layer in multilayer stacks.

400 Scanning electron microscopy (SEM)

401 A high-resolution field-emission Hitachi S-4800 SEM was used to measure the top-view
402 and cross-sectional images of the single-junction solar cells and tandems.

403 X-ray diffraction (XRD)

404 A Rigaku Ultima III XRD with Cu K α radiation was used to measure and analyse the
405 crystal structure and properties of the low-bandgap mixed Sn-Pb perovskites.

406 Photoluminescence (PL) characterization, imaging and quasi-Fermi level splitting (QFLS)
407 analysis

408 Perovskite films deposited on HTL/ITO stacks using the same recipe as used for device
409 fabrication. The PL and absolute PL spectra of the encapsulated samples were collected

410 using a hyperspectral imaging system coupled to a microscope with SWIR camera (Photon
411 etc. IMA). Excitation of the samples took place from the top surface of the perovskite layer
412 using a 808 nm laser, under approximately 1 sun illumination condition. The absolute
413 calibration process for the experimental setup is described in detail elsewhere⁴⁴. PL spectra
414 of the samples were extracted using PHySpecV2 software. To obtain the quasi-Fermi level
415 splitting (QFLS), the collected data was analyzed using custom MatLab code, as previously
416 reported¹⁵.

417 Conductive atomic force microscope (cAFM)

418 The cAFM mappings were collected using an Asylum Research MFP3D atomic force
419 microscope mounted on an inverted Nikon Eclipse microscope and a customized piezo-
420 stage. All samples were loaded in a nitrogen glovebox and protected under active flowing
421 nitrogen throughout the measurement. To extract the spatial photocurrent information, all
422 samples were illuminated with a 455 nm LED (with intensity of ~ 0.8 sun) from the
423 glass/ITO side, biased with 1.5 V, and probed with Cr/Pt-coated silicon tips (MikroMasch,
424 75 kHz) and a 2 nA/N tip holder. In the cAFM analysis in **Supplementary Fig. 18**, we
425 grouped the current of each pixel in the cAFM images into 40 bins of equal width, and
426 defined the pixels in the first bin with current < 0.1 nA as being insulating.

427 Photoluminescence quantum yield (PLQY)

428 The excitation source was an unfocused beam of a 442 nm c.w. diode laser.
429 Photoluminescence was collected using an integrating sphere with a pre-calibrated fibre
430 coupled to a spectrometer (Ocean Optics QE Pro) with an intensity of ~300 mW cm⁻².
431 PLQY values were calculated by $PLQY = PSPEx * A$, where $A=1-PLPEx$, PS is the

432 integrated photon count of sample emission upon laser excitation; PEx is the integrated
433 photon count of the excitation laser when the sample is removed from integrating sphere,
434 and PL is the integrated photon count of the excitation laser when sample is mounted in
435 the integrating sphere and hit by the beam. A set of neutral density filters were used to vary
436 the excitation density.

437 Grazing-incidence wide-angle x-ray scattering (GIWAXS)

438 GIWAXS characterization was performed at Lawrence Berkeley National Laboratory
439 (LBNL) using beamline 7.3.3 of the Advanced Light Source, and an energy of 10 keV. The
440 sample to detector distance was calibrated with AgB prior to sample measurement. All
441 samples were placed into a helium atmosphere with <0.03% O₂ and scattering signals
442 collected (1 s exposure) using a 2D CCD detector (Pilatus 2M) with a 0.172 mm by 0.172
443 mm pixel size. Incident angles between 0.1° and 0.222° were used for the measurement.

444 Time-Resolved Photoluminescence (TRPL) spectroscopy

445 TRPL measurements were performed using a Horiba Fluorolog Time Correlated Single
446 Photon Counting (TCSPC) system. A pulsed laser diode (504 nm, 110 – 140 ps pulse width,
447 average 1.4mW) was used as excitation sources for steady-state and transient
448 measurements. TRPL decay curves were fitted with biexponential components to obtain a
449 fast and a slow decay lifetime. The mean carrier lifetimes τ for the biexponential fit were
450 calculated by the weighted average method.

451 **Data Availability**

452 All data generated or analysed during this study are included in the published article and
453 its Supplementary Information and Source Data files.

454 The crystallographic files (CIF) for the compounds reported in this work can be found as
455 depositions in the Cambridge Crystallographic Data Centre (CCDC) based on the
456 following deposition numbers: 2269329 for (EDA)₂PbI₂ and 2269332 for (DAP)₂PbI₂.

457 **Acknowledgments**

458 This research was made possible by US Department of Energy's Office of Energy
459 Efficiency and Renewable Energy (EERE) under the Solar Energy Technologies Office
460 Award Number DE-EE0008753, Ontario Research Fund-Research Excellence programme
461 (ORF7-Ministry of Research and Innovation and Ontario Research Fund-Research
462 Excellence Round 7). Work at University of Toledo was supported by Hydrogen and Fuel
463 Cell Technologies Office Award Number DE-EE0008837 and by the National Science
464 Foundation under contract number DMR-1807818. M.G.K. was supported by the Office
465 of Naval Research (ONR) under grant N00014-20-1-2725. At King Abdullah University
466 of Science and Technology (KAUST), this work was supported under award no. OSR-
467 2020-CRG9-4350. Single Crystal diffraction experiments made use of the IMSERC
468 Crystallography and Physical Characterization facilities at Northwestern University, which
469 received support from the Soft and Hybrid Nanotechnology Experimental (SHyNE)
470 resource (NSF ECCS-2025633). A.B. was supported by a fellowship through the National
471 Defense Science and Engineering Graduate (NDSEG) Fellowship program, sponsored by
472 the Air Force Research Laboratory (AFRL), the Office of Naval research (ONR), and the
473 Army Research Office (ARO). Portions of this research were conducted at beamline 7.3.3
474 of the Advanced Light Source, Lawrence Berkeley National Laboratory, which was
475 supported by the Office of Science, Office of Basic Energy Sciences, of the U.S.
476 Department of Energy under Contract No. DE-AC02-05CH11231. F. J. and D.S.G.

477 acknowledge the institutional support from the B. Seymour Rabinovitch Endowment and
478 the state of Washington.

479 **Author Contributions**

480 Chongwen Li, Y.Y. B.C. and E.H.S. conceived the idea of this project. Chongwen Li
481 fabricated the low-bandgap and wide-bandgap subcell, and assembled tandem solar cells
482 for certification. L.C. fabricated the low-bandgap solar cells for device performance
483 measurement, prepared single crystals and thin film samples for crystal analysis, SEM, and
484 XRD. F.J. and D.S.G. carried out cAFM and associated data analysis. B.C. helped with
485 experimental design and data analysis. Xiaoming Wang carried out DFT calculations. E.U.
486 and S.D.W. carried out the PL mapping and QFLS analysis. A.B. and M.G.K. carried out
487 crystal analysis. D.L. and Z.-H.L. carried out the depth-profile XPS characterization and
488 data analysis. Chongwen Li and Yuan Liu helped with the XPS measurement and data
489 analysis. A.M. carried out the PLQY measurement and data analysis. Chongwen Li, You
490 Li and L.C. carried out stability tests. Xuefei Wu, Z.F., Q.H. and T.P.R. carried out
491 GIWAXS measurement and data analysis. L.Z., and Z.W. performed *J-V* and EQE
492 measurement. Chongwen Li, B.C., Z.S., Y.Y. and E.H.S. wrote and edited the manuscript.
493 All the authors contributed to the discussion of the results and the final manuscript
494 preparation.

495 **Ethics declarations**

496 Competing Interests
497 The authors declare no competing interests.

498 **Figure legends**

499 **Fig. 1 | Oxidation inhabitation of mixed Sn–Pb films.** **a**, Pb and Sn atomic ratio of control,
500 EDA- and DAP-treated mixed Sn–Pb perovskite thin films extracted from the surface XPS
501 measurement. **b**, **c**, Sn (IV) content of mixed Sn–Pb films treated with EDA and DAP. **d**
502 to **f**, SEM images of control, EDA- and DAP-treated mixed Sn–Pb perovskite thin films.
503 The scale bar is 1 um. **g**, **h**, Crystal structure of $\text{PbI}_2(\text{EDA})_2$ and $\text{PbI}_2(\text{DAP})_2$ unit cells.

504 **Fig. 2 | Surface passivation of mixed Sn–Pb films.** **a**, **b**, **c**, cAFM images of control,
505 EDA- and DAP-treated mixed Sn–Pb perovskite thin films. The scale bar is 1 um. **d**, **e**, **f**,
506 QFLS maps of control, EDA- and DAP-treated mixed Sn–Pb perovskite thin films. **g**, PL
507 spectra of control, EDA- and DAP-treated mixed Sn–Pb perovskite thin films. **h**, QFLS
508 statistic of the thin films over the surface of the samples. 19 pixels of each set of samples
509 were measured. The boxes indicate 25th (upper quartile) to 75th (lower quartile) percentiles.
510 The whiskers show the range to the upper and lower extremes. The small squares and solid
511 lines in the boxes represent the mean points and median lines. **i**, PLQY of thin films before
512 and after C_{60} deposition.

513 **Fig. 3 | Performance and stability of mixed Sn–Pb PSCs.** **a**, J – V curves of control and
514 DAP-treated mixed Sn–Pb cells measured under reverse and forward scans. **b**, PCE
515 statistics of control and DAP-treated mixed Sn–Pb cells. 11 cells of each set of solar cells
516 were measured. The boxes indicate 25th (upper quartile) to 75th (lower quartile) percentiles.
517 The whiskers show the range to the upper and lower extremes. The small squares, solid
518 lines and colored circles in the boxes represent the mean points, median lines, and statistical
519 data points. **c**, Decomposition energies of $\text{PbI}_2(\text{DAP})_2$ unit cells, $\text{CH}_3\text{NH}_3\text{PbI}_3$ and
520 $\text{CH}_3\text{NH}_3\text{SnI}_3$. **d**, Thermal stability of control and DAP-treated PSCs. The filled circles and
521 error bars represent the mean values and standard deviations of 5 cells measured at each

522 condition. **e**, MPP stability results of control and DAP-treated PSCs measured under a
523 white LED solar simulator with simulated AM 1.5G spectrum.

524 **Fig. 4 | Tandem device performance and stability.** **a, b**, Device architecture and a cross-
525 sectional SEM image of a tandem. The scale bar is 500 nm. The composition of the wide-
526 E_g subcell is $FA_{0.8}Cs_{0.2}Pb(I_{0.63}Br_{0.37})_3$. **c**, $J-V$ curves of low-bandgap, wide-bandgap and
527 tandem cells. **d**, EQE curves and the reflectance of a tandem. **e**, Certified $J-V$ curves of a
528 tandem. **f**, MPPT results of control and DAP-treated tandems measured under a white LED
529 solar simulator with simulated AM 1.5G spectrum.

530

531

532 **References**

533 1 Zhao, D. *et al.* Efficient two-terminal all-perovskite tandem solar cells enabled by high-
534 2 quality low-bandgap absorber layers. *Nature Energy* **3**, 1093-1100 (2018).

535 2 Zhao, D. *et al.* Low-bandgap mixed tin-lead iodide perovskite absorbers with long carrier
536 3 lifetimes for all-perovskite tandem solar cells. *Nature Energy* **2**, 17018 (2017).

537 3 Lin, R. *et al.* Monolithic all-perovskite tandem solar cells with 24.8% efficiency
538 4 exploiting comproportionation to suppress Sn(ii) oxidation in precursor ink. *Nature*
539 4 **Energy** **4**, 864-873 (2019).

540 4 Lin, R. *et al.* All-perovskite tandem solar cells with improved grain surface passivation.
541 5 *Nature* **603**, 73-78 (2022).

542 5 Wang, C., Song, Z., Li, C., Zhao, D. & Yan, Y. Low-Bandgap Mixed Tin-Lead
543 6 Perovskites and Their Applications in All-Perovskite Tandem Solar Cells. *Advanced*
544 6 *Functional Materials* **29**, 1808801 (2019).

545 6 Lin, R. *et al.* All-perovskite tandem solar cells with 3D/3D bilayer perovskite
546 7 heterojunction. *Nature* **620**, 994-1000 (2023).

547 7 Li, Z. *et al.* Cost Analysis of Perovskite Tandem Photovoltaics. *Joule* **2**, 1559-1572
548 8 (2018).

549 8 Best Research-Cell Efficiency Chart. NREL, <https://www.nrel.gov/pv/cell-efficiency.html>
550 9 (2023).

551 9 Green, M. A. *et al.* Solar cell efficiency tables (Version 61). *Progress in Photovoltaics:*
552 10 *Research and Applications* **31**, 3-16 (2023).

553 10 Li, C. *et al.* Low-bandgap mixed tin-lead iodide perovskites with reduced
554 11 methylammonium for simultaneous enhancement of solar cell efficiency and stability.
555 11 *Nature Energy* **5**, 768-776 (2020).

556 11 Wang, Z. *et al.* Suppressed phase segregation for triple-junction perovskite solar cells.
557 12 *Nature* **618**, 74-79 (2023).

558 12 Zuo, C. *et al.* Advances in Perovskite Solar Cells. *Advanced Science* **3**, 1500324 (2016).

559 13 Chen, H. *et al.* Regulating surface potential maximizes voltage in all-perovskite tandems.
560 13 *Nature* **613**, 676-681 (2023).

561 14 Warby, J. *et al.* Understanding Performance Limiting Interfacial Recombination in pin
562 14 Perovskite Solar Cells. *Advanced Energy Materials* **12**, 2103567 (2022).

563 15 Liu, J. *et al.* Efficient and stable perovskite-silicon tandem solar cells through contact
564 15 displacement by MgFx. *Science* **377**, 302-306 (2022).

565 16 Li, C. *et al.* Reducing Saturation-Current Density to Realize High-Efficiency Low-
566 16 Bandgap Mixed Tin-Lead Halide Perovskite Solar Cells. *Advanced Energy Materials* **9**,
567 16 1803135 (2019).

568 17 Stolterfoht, M. *et al.* The impact of energy alignment and interfacial recombination on the
569 17 internal and external open-circuit voltage of perovskite solar cells. *Energy &*
570 17 *Environmental Science* **12**, 2778-2788 (2019).

571 18 Cao, J. *et al.* High-Performance Tin-Lead Mixed-Perovskite Solar Cells with Vertical
572 18 Compositional Gradient. *Advanced Materials* **34**, 2107729 (2022).

573 19 Ricciarelli, D., Meggiolaro, D., Ambrosio, F. & De Angelis, F. Instability of Tin Iodide
574 19 Perovskites: Bulk p-Doping versus Surface Tin Oxidation. *ACS Energy Letters* **5**, 2787-
575 19 2795 (2020).

576 20 Hu, S. *et al.* Optimized carrier extraction at interfaces for 23.6% efficient tin-lead
577 20 perovskite solar cells. *Energy & Environmental Science* **15**, 2096-2107 (2022).

578 21 Jokar, E. *et al.* Slow surface passivation and crystal relaxation with additives to improve
579 21 device performance and durability for tin-based perovskite solar cells. *Energy &*
580 21 *Environmental Science* **11**, 2353-2362 (2018).

581 22 Xiao, K. *et al.* All-perovskite tandem solar cells with 24.2% certified efficiency and area
582 over 1 cm² using surface-anchoring zwitterionic antioxidant. *Nature Energy* **5**, 870-880
583 (2020).

584 23 Chen, Q. *et al.* Unveiling Roles of Tin Fluoride Additives in High-Efficiency Low-
585 Bandgap Mixed Tin-Lead Perovskite Solar Cells. *Advanced Energy Materials* **11**,
586 2101045 (2021).

587 24 Hu, S. *et al.* Synergistic Surface Modification of Tin–Lead Perovskite Solar Cells.
588 *Advanced Materials* **35**, 2208320 (2023).

589 25 Kapil, G. *et al.* Tin-Lead Perovskite Fabricated via Ethylenediamine Interlayer Guides to
590 the Solar Cell Efficiency of 21.74%. *Advanced Energy Materials* **11**, 2101069 (2021).

591 26 Kamarudin, M. A. *et al.* Suppression of Charge Carrier Recombination in Lead-Free Tin
592 Halide Perovskite via Lewis Base Post-treatment. *The Journal of Physical Chemistry
593 Letters* **10**, 5277-5283 (2019).

594 27 Lanzetta, L. *et al.* Degradation mechanism of hybrid tin-based perovskite solar cells and
595 the critical role of tin (IV) iodide. *Nature Communications* **12**, 2853 (2021).

596 28 Leijtens, T., Prasanna, R., Gold-Parker, A., Toney, M. F. & McGehee, M. D. Mechanism
597 of Tin Oxidation and Stabilization by Lead Substitution in Tin Halide Perovskites. *ACS
598 Energy Letters* **2**, 2159-2165 (2017).

599 29 Zou, Y. *et al.* Manipulating crystallization dynamics through chelating molecules for
600 bright perovskite emitters. *Nature Communications* **12**, 4831 (2021).

601 30 Kurisinkal Pious, J. *et al.* Revealing the Role of Tin Fluoride Additive in Narrow
602 Bandgap Pb-Sn Perovskites for Highly Efficient Flexible All-Perovskite Tandem Cells.
603 *ACS Applied Materials & Interfaces* **15**, 10150-10157 (2023).

604 31 Liao, W. *et al.* Lead-Free Inverted Planar Formamidinium Tin Triiodide Perovskite Solar
605 Cells Achieving Power Conversion Efficiencies up to 6.22%. *Advanced Materials* **28**,
606 9333-9340 (2016).

607 32 Krämer, U., Cotter-Howells, J. D., Charnock, J. M., Baker, A. J. M. & Smith, J. A. C.
608 Free histidine as a metal chelator in plants that accumulate nickel. *Nature* **379**, 635-638
609 (1996).

610 33 Han, C. *et al.* Large-Size and Polarization-Sensitive Two-Dimensional Sn Perovskite
611 Single Crystals. *ACS Materials Letters* **4**, 987-994 (2022).

612 34 Liu, Y. *et al.* Multi-inch single-crystalline perovskite membrane for high-detectivity
613 flexible photosensors. *Nature Communications* **9**, 5302 (2018).

614 35 Shi, Y. *et al.* (3-Aminopropyl)trimethoxysilane Surface Passivation Improves Perovskite
615 Solar Cell Performance by Reducing Surface Recombination Velocity. *ACS Energy
616 Letters* **7**, 4081-4088 (2022).

617 36 Li, C. *et al.* Rational design of Lewis base molecules for stable and efficient inverted
618 perovskite solar cells. *Science* **379**, 690-694 (2023).

619 37 Zhang, Y.-Y. *et al.* Intrinsic instability of the hybrid halide perovskite semiconductor
620 CH₃NH₃PbI₃. *Chinese Physics Letters* **35**, 036104 (2018).

621 38 Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized Gradient Approximation Made
622 Simple. *Physical Review Letters* **77**, 3865-3868 (1996).

623 39 Koziskova, J., Hahn, F., Richter, J. & Kozisek, J. Comparison of different absorption
624 corrections on the model structure of tetrakis ([μ] 2-acetato)-diaqua-di-copper (II). *Acta
625 Chimica Slovaca* **9**, 136 (2016).

626 40 Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H.
627 OLEX2: a complete structure solution, refinement and analysis program. *Journal of
628 Applied Crystallography* **42**, 339-341 (2009).

629 41 Sheldrick, G. M. SHELXT—Integrated space-group and crystal-structure determination.
630 *Acta Crystallographica Section A: Foundations and Advances* **71**, 3-8 (2015).

631 42 Sheldrick, G. M. Crystal structure refinement with SHELXL. *Acta Crystallographica*
632 *Section C: Structural Chemistry* **71**, 3-8 (2015).

633 43 Momma, K. & Izumi, F. VESTA: a three-dimensional visualization system for electronic
634 and structural analysis. *Journal of Applied Crystallography* **41**, 653-658 (2008).

635 44 Delamarre, A., Lombez, L. & Guillemoles, J. F. Characterization of solar cells using
636 electroluminescence and photoluminescence hyperspectral images. *Journal of Photonics*
637 *for Energy* **2**, 027004-027004 (2012).

638

