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depends on its economic viability and
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learning curve, which is presently

underexplored. Here, we fill the

knowledge gap via a top-down and

bottom-up cost evaluation approach. We

find that the long-term cost can fall

substantially, but stronger policy support

will be required to meet optimistic

targets.
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SCIENCE FOR SOCIETY Scientists, policymakers, and businesses are scrambling to understand feasible
pathways to meet the Paris climate goals, with a strong focus on carbon dioxide removal (CDR) that is
essential for net-zero. As a prime, but currently costly, CDR technology, direct air capture and storage
(DACS) technologies and deployment routes have been examined by many modelling studies, and govern-
ments are working to develop policy frameworks to steer favourable business conditions. Both efforts are
striving to project when and howDACSwill be cost-effective. Strategies such as site selection and choice of
electricity sources are supposed as key cost decline drivers; what is yet unclear is whether such strategies
can enable the optimistic cost targets, like those preferred by the US government (i.e., $100 t-CO2

-1), to be
met. Via a plant-level bottom-up and top-down cost assessment, we find that costs could drop to $100-600
t-CO2

-1 by 2050 thanks to strategic deployment that can bend the capital cost curve, but to reach econom-
ically viable cost levels, strong and tailor-made policies will almost certainly need to be put into place.
SUMMARY
Carbon dioxide removal (CDR) is necessary to minimize the impact of climate change by tackling hard-to-
abate sectors and historical emissions. Direct air capture and storage (DACS) is an important CDR technol-
ogy, but it remains unclear when and how DACS can be economically viable. Here, we use a bottom-up en-
gineering-economicmodel together with top-down technological learning projections to calculate plant-level
cost trajectories for four DACS technologies. Our analysis demonstrates that the costs of these technologies
can plateau by 2050 at around $100-600 t-CO2

-1 mainly via capital cost reduction through aggressive deploy-
ment, but still exceed the optimistic targets defined by countries such as the US (i.e., $100 t-CO2

-1). A further
analysis of existing policy mechanisms indicates that strong, project-catered policy support will be required
to create market opportunities, accelerate DACS scale-up and lower the costs further. Our work suggests
that strategic DACS deployment and operation must be coupled with strong policies to minimise the cost
of DACS and maximise the opportunity to make a planet-scale climate impact.
INTRODUCTION

Carbon dioxide removal (CDR) is a vital tool in the fight against

climate change. The prevention of greenhouse gas (GHG) emis-

sions should be a priority, but there is little doubt that CDRwill be

required to offset hard-to-abate emissions if we are to prevent

the worst impacts of climate change and limit the planet’s warm-

ing to 1.5�C or even 2�C.1,2 Also, CDR is needed to achieve net-

negative emissions once carbon neutrality of our economies has
One Earth 6, 899–917,
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been reached. Bergman and Rinberg approximate that "hard-to-

avoid" emissions may be between 1.5 and 3.1 Gt-CO2,eq year
�1

(throughout this paper, t always refers to metric tonnes) by

2100,3 while the economic-optimized integrated assessment

modeling pathways that result in 1.5�C of warming suggest

that net-negative CO2 emissions are required from between

2040 and 2070.4 Direct air capture (DAC) and direct air capture

and storage (DACS) is a technological solution to CDR. DAC

entails the extraction of CO2 from air, in most cases, using a
July 21, 2023 ª 2023 The Author(s). Published by Elsevier Inc. 899
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Figure 1. Graphical representation of typical cost trajectories for processing technologies

Cost estimates of the FOAK plant tend to increase from low to high TRL due to issues such as legal and safety requirements, incomplete process designs

and understanding of the process, and the need to engineer out issues identified during upscaling. From the FOAK plant, the costs typically start to fall as a

result of learning how to operate the plant optimally, learning where redundancies are in process design, mass manufacturing of plant components, profits

being funneled back into innovation leading to process intensification and reduced energy penalties, etc. Adapted from van der Spek et al.103

ll
OPEN ACCESS Article
chemical sorbent and subsequent release of that CO2 from the

sorbent. As an approach to CDR, DACS facilitates comparatively

easy carbon accounting and fewer external impacts, such as

competition for land, than other approaches for CDR.5,6 Howev-

er, it may also be costly and energy intensive, and, in some

cases, water intensive.7 In this context, it is important to under-

stand that removing carbon dioxide from the atmosphere at

$100 t-CO2
�1 has widely been identified as a holy grail of eco-

nomic viability for DACS and an ambitious target set by policy-

makers in the United States.8 The importance of this specific

value will not be analyzed in this work, although readers should

be aware that estimates place the global social cost of carbon

as high as $417 t-CO2
�1.9

This shows there is a critical need for DACS cost estimates to

underpin policymaking, integrated assessment modeling, and

investment decisions. These estimates must be produced inde-

pendently (i.e., by organizations other than DAC technology de-

velopers). As a result, several studies have attempted to estimate

the current cost of DACS10–17 or project the cost of DACS into the

future.16,18–20 However, these studies all use methods inconsis-

tent with the nature of the cost development of early-stage tech-

nologies, whose costs tend to rise during the research, develop-

ment, and deployment (RD&D) phase up to the first deployed

commercial scale plant, i.e., the first-of-a-kind (FOAK) plant,

and then start falling as a function of deployment, as demon-

strated in Figure 1. A recent method for the costing of advanced

CO2 capture technologies was postulated by Rubin and co-

workers.21 It is currently the only method consistent with the

cost trajectory of early-stage, low-technology-readiness-level

(TRL) technologies. The method is called the ‘‘hybrid method.’’
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It combines bottom-up engineering-economic studies to esti-

mate the cost of a FOAK plant, with technological learning pro-

jections accounting for cost reductions with cumulative technol-

ogy deployment as a result of innovation, learning by doing,

learning by using, and economies of scale, among others.21–28

Critical to this method is a sound FOAK cost estimate for the

low-TRL technology, which should include the cost escalations

from the current TRL to the FOAK plant, i.e., TRL 8 (demonstra-

tion) or 9 (deployment). In particular, the correct application of

this cost escalation is missing in the existing literature. Conse-

quently, the few academic studies that project the costs of

DACS into the future using technological learning commence

from a starting point that is too low (sometimes by a whole order

of magnitude in the case of solid sorbent DAC), leading to unre-

alistically low estimates of the future cost of DACS.18–20

Furthermore, many cost figures of DAC that are quoted in

the public domain are based on available information from

the companies developing the technologies, and independent

interpretation and corroboration are lacking. Additionally, ex-

isting academic studies and publicly presented cost figures

differ in assumed boundary conditions, often omitting parts

of the DACS value chain (e.g., CO2 compression, transport,

and storage), leading to further unjustified lowering of DACS

costs. There is also high uncertainty on the current costs of

DACS, which is often not sufficiently highlighted in cost

modeling studies. Also, there is little to no information on

how the economics of DACS will vary in locations outside

the United States, and perhaps Europe, and on how govern-

ment policy may support the deployment and cost develop-

ment of DACS projects. Finally, the cost projections of



Figure 2. Summary of DACS technologies studied

The four technologies assessed as part of this study. (A) KOH absorption paired with regeneration via Ca looping, (B) KOH absorption paired with regeneration via

bipolar membrane electrodialysis (BPMED), (C) solid sorbent DAC using temperature vacuum swing adsorption, and (D) MgO ambient weathering with

regeneration via calcination. It is assumed in this study that the heat in both (A) and (D) is supplied by natural gas to oxy-fired calciners.
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DACS typically include solid sorbent DAC (or low-temperature

[LT] DAC), and liquid solvent DAC with Ca looping (or high-

temperature [HT] DAC), but other technologies are often

omitted. Hence, actually plausible current cost ranges and

projections for a portfolio of DACS technologies across

different geographies remain unavailable.

Here, we aim to address this caveat by providing a method-

ologically consistent answer to where the costs of DACS may

occur due to large-scale deployment and the potential impact

of deployment location and policy. We apply our costing

approach to four DAC technologies to span a technology

space wider than only solid sorbent and liquid solvent DAC:

(1) KOH absorption paired with regeneration via calcium loop-

ing,12 (2) KOH absorption paired with regeneration via bipolar

membrane electrodialysis (BPMED),29 (3) solid sorbent DAC

using temperature vacuum swing adsorption,30 and (4) MgO

ambient weathering with regeneration via calcination,31 pre-

sented in Figure 2. We identify that the cost of DACS will fall

to $100–600 t-CO2
�1 and, as a result, the long-term target

of $100 t-CO2
�1 will remain elusive, while policymakers must

revisit the social cost of carbon to assess whether this target
is even relevant. We also show that the costs of DACS can

vary quite significantly between countries and energy supply

strategies and rational siting may thus be critical to obtain

cost-optimal solutions. We finally show that grant support is

more suited for smaller than for larger projects and can rapidly

lower the costs of the first implementations, while policies

lowering the cost of capital are key for the feasibility of larger

projects and long term.

RESULTS AND DISCUSSION

Learning curves and modularity
Figure 3 shows the learning-curve ranges obtained from the

analysis for the United States paired with nuclear electricity.

The insights drawn from this figure are generalizable, but the

exact cost values vary by location and energy source, as dis-

cussed later.

The commonly cited cost goal is unlikely to be met
Figure 3 suggests that the common long-term target to remove

CO2 from the atmosphere under $100 t-CO2
�1 will be very
One Earth 6, 899–917, July 21, 2023 901



Figure 3. DACS cost learning curves paired to nuclear electricity

Cost development trajectories of the four technologies from the kilotonne to

the gigatonne CO2 net removed per annum scale. Note the log scale on the x

axis. The cases studied are in the United States paired to nuclear electricity

and using a heat pump for low-grade heat where applicable. The figure pro-

vides ranges instead of lines, highlighting a large amount of uncertainty and

variability in the estimates. Trajectories for different locations paired with

geothermal electricity can be found in Figure S13. Example cost breakdowns

from this plot at the Mt-CO2 year
�1 and Gt-CO2 year

�1 scales are available in

Table S19.
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challenging to reach.8,32 The figure shows that the Gt-CO2

year�1 scale estimates range from $100 t-CO2
�1 to $1,350 t-

CO2
�1, with three of the technologies being in a similar range,

excluding KOH BPMED. Along the way, at the Mt-CO2 year�1

scale, the costs range from $250 to 1,500 t-CO2
�1. The lowest

estimate for three of the four technologies converges onto

$100–170 t-CO2
�1, indicating the lower limit to the cost of

DACS under our current assumptions and the four technologies

studied here. The technology with the highest cost at scale is the

electrochemical KOH BPMED due to its (current) high electricity

requirement of 22.5 GJ t-CO2
�1. However, alternative electro-

chemical technologies have the potential to reduce this require-

ment. For example, the recent work by the Hatton group demon-

strates a technology that could use much less energy,33,34 but

there are not enough published data, and the TRL is too low to

perform an accurate cost assessment, and hence this technol-

ogy improvement was not considered for analysis in this work.

Modular technologies are only more expensive now
The solid sorbent and KOH BPMED FOAK scale is smaller than

for the other two technologies, leading to higher FOAK costs

yet similar costs at comparable scales. The smaller FOAK

scale technologies incur a much higher FOAK cost as theycan-

not utilize economies of scale. However, these more modular

technologies also exhibit more technological learning as there

are greater opportunities to improve and reduce costs when

producing such modules through mass production, and they

undergo more doublings in installed capacity before a certain

scale is reached.35 This leads to overlapping costs at similar

scales across all four technologies. The downstream process-
902 One Earth 6, 899–917, July 21, 2023
ing units of all the technologies, such as compression and

condensation, are not inherently modular. Hence, they have

a greater impact on the FOAK cost of the modular technolo-

gies, as economies of scale are not utilized. This can be

observed in Figure S14, where the FOAK net removed cost

for the most modular process, solid sorbent, is sensitive to

the compressor capital cost. Co-located DAC systems could

alleviate this if multiple plants share downstream processing

units, which could be an opportunity to reduce the FOAK costs

of (modular) DAC technologies.

Due to the large dependence on the individual unit size, opti-

mizing the module size could be an exciting problem for further

investigation within each DACS technology. Figures S1–S4 pre-

sent some preliminary analysis of the impact of FOAK plant size

on the learning curves. Across the plant sizes studied, the initial

size of the solid sorbent and KOH BPMED technologies has little

impact on theGt-CO2 year
�1 scale cost projections, but the solid

sorbent FOAK costs are affected. For the MgO ambient weath-

ering and KOH-Ca looping technologies, the 1 Mt-CO2 year�1

and 0.5 Mt-CO2 year
�1 FOAK plant size learning curves overlap

almost perfectly. However, decreasing the FOAK plant size

further to 0.1 Mt-CO2 year�1 dramatically affects both the

FOAK and Gt-CO2 year�1 scale costs negatively, indicating

that the FOAK plants for these technologies should ideally be

built at large scales.

Point estimates or targets should be avoided
There is a large potential range in the FOAK costs of each tech-

nology, given the accuracy of the capital cost estimate, the po-

tential range of possible process contingencies, variation in

energy prices, range of possible discount rates, and range of

possible transport and storage costs. Due to this uncertainty,

singular point estimates for the cost of DACS provide little value

and should be avoided in the public discourse in future. The

capital cost accuracy, and range of process contingencies in

particular, reflects the immaturity and perhaps more the lack

of publicly available technology design, performance, and

cost data.

Capital cost reduction by deployment is critical
Cost breakdowns at the FOAK and Gt-CO2 year�1 scale are

available in Figure S15. For a FOAK plant, the capital costs

are dominant for solid sorbent DACS, but they also make up

a large proportion of the cost for KOH-Ca looping and MgO

ambient weathering. The exception is KOH BPMED, which is

dominated by operating costs through high energy demands.

This begins to change as deployment progresses. Operating

costs have much more influence when the technology has fully

matured. Deployment will drive capital costs down at a higher

rate than operating costs, therefore deployment is key to cost

reductions.

Pairing DACS to intermittent renewables is expensive
Figure 4 shows the learning-curve ranges obtained from the

analysis for the United States paired with intermittent renewable

electricity for comparison to Figure 3 and provides a key insight.

The ranges in Figure 4 are much larger than the ranges in Fig-

ure 3, essentially due to the large range of intermittent renewable

capacity factors across the United States, indicating that pairing



Figure 4. DACS cost learning curves paired to intermittent re-

newables

Cost development trajectories of the four technologies from the kilotonne to

the gigatonne CO2 net removed per annum scale. Note the log scale on the x

axis. The cases studied are in the United States paired to intermittent

renewable electricity and using a heat pump for low-grade heat where appli-

cable. The figure provides ranges instead of lines, highlighting a large amount

of uncertainty and variability in the estimates.
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DACS to intermittent renewables is unlikely to be cost-effective

unless the renewable electricity comes from installations with

high-capacity factors, such as some offshore wind installations.

This counters the argument that DACS could run on cheap cur-

tailed renewable energy, for instance, as the sharing of the cap-

ital investment over the total amount of CO2 removed would be

insufficient. Ideally, DACS would run constantly on an almost

completely decarbonized grid.

Results in context
Currently, the only commercial plants in the world are operated

by Climeworks. They have quoted costs or prices of $500–600

t-CO2
�1 in 2019 and V1,000 t-CO2

�1, specifically from the

Orca plant, in 2021.36,37 However, our FOAK cost estimates

are $1,300–3,100 t-CO2
�1 for a case study in the USA paired

to nuclear electricity. These costs are perhaps not entirely com-

parable, given the lack of information on cost breakdown and

whether their quotes include compression, transport, and stor-

age. For example, if we assume in our model that we have free

waste heat with a 0% discount rate and no compression or stor-

age costs, this value becomes $580–920 t-CO2
�1, which is

consistent with previous quotes from Climeworks. Then, if we

extrapolate this using learning rates from the Hinwil to Orca

scale, the range becomes $410–760 t-CO2
�1. Previously,

companies have paid up to $2,050 t-CO2
�1 in voluntary CDR

markets, suggesting there is a potential business case

currently.38 The opportunities for these early cost reductions,

such as using waste heat, will likely be exploited first, leading

to slightly lower costs than those predicted here for FOAK and

early plants. However, when we reach large-scale deployment,

these opportunities should have been fully utilized, leading to

the scenarios predicted in our learning curves. Papapetrou
et al. estimate that 100 TWh year�1 of recoverable LT waste

heat (<200�C) is available in the European Union,39 but this waste

heat can also be utilized for space heating or efficiency gains if it

is close to urban areas or other industries. If this waste heat could

be utilized for solid sorbent DACS alone, this would only support

�37 Mt-CO2 year�1 of deployment, which is an unrealistically

optimistic best-case scenario.

For the KOH-Ca looping process, Keith et al. explicitly state

that they do not do a cost evaluation for a FOAK plant.12 Instead,

they compare the cost of an "early plant" and Nth-of-a-kind

(NOAK) plant. The early plant estimates from their study are

$190–260 t-CO2
�1 when we escalate Keith et al.’s capture cost

to net removed cost using their figure of 0.1 tonnes of CO2

emitted per tonne captured.12 However, our FOAK cost estimate

is larger and ranges from $260–620 t-CO2
�1 in our harmonized

framework for a case study in the USA paired to nuclear elec-

tricity. The main reason is that the contingencies that we apply

are now reflective of the TRL and detail of the engineering study.

These contingencies also cascade into higher fixed operating

and maintenance costs, which here are a function of capital

cost. Meanwhile, the literature cost estimates of the KOH

BPMED and MgO ambient weathering processes are said to

be for a NOAK plant and are not comparable to the FOAK cost

estimates here.

Costs will plateau from 2050 to 2075
So far, we have investigated how costs develop with deploy-

ment. Now we will attempt to translate this into projected

costs as a function of time. The rate of deployment depends

on targeted maximum global temperature increases and other

socio-economic, political, and technological variables. There

are less than a handful studies that project DACS deployment

into the future, and we used these to provide an indicative

projection of the cost development of DACS in time.2,40,41 Fig-

ure 5 shows the scenario analysis results for a United States

location paired with nuclear electricity. The conclusions drawn

from this figure are general to other locations and electricity

sources, with only the exact values varying. This variation is

discussed below using Figure 6.

Figure 5 shows that the initial high cost of a small modular

FOAK plant for solid sorbent DACS may be mitigated by higher

learning rates andmore doublings by 2030 at the latest if deploy-

ment continues. Another critical observation from Figure 5 is that

the difference in cost between the two uptake scenarios is

greater than the difference between a 25% or 100% market

share, indicating that we could scale four technologies simulta-

neously and still expect to bring down the cost through techno-

logical learning. We do not need to pick a winner up front. From

Figure 5, we see that the long-term costs, toward the end of the

century, are likely heading to around $100–600 t-CO2
�1. When

this is achieved depends on the scenario. For example, under

the low-uptake scenario, the costs plateau by around 2075.

Meanwhile, under the high-uptake scenario, this will happen

by 2050.

Siting decisions must be rational
The coloredmatrices in Figure 6 show how themedian costs, us-

ing our middle or most likely values for all parameters, vary

across locations and electricity sources. Generally, higher
One Earth 6, 899–917, July 21, 2023 903



Figure 5. The net removed cost of each technology as time advances for four different scenarios

Extreme low and high uptake scenarios were identified that would still allow us to limit the planet’s warming to 1.5�C or 2�C, based on integrated assessment

modeling studies, while we also allowed for a 25% or 100% technology dominance.2,40,41 This is for the United States paired with nuclear electricity and a heat

pump for low-grade heat where appropriate. The error bars are defined by the lowest and highest costs using the assumption and parameter lower and upper

bounds. In (A), the technologies account for 25% of the deployment in the high uptake scenario from Table S16. In (B), the technologies account for 100% of the

deployment in the high-uptake scenario from Table S16. In (C), the technologies account for 25%of the deployment in the low-uptake scenario from Table S16. In

(D), the technologies account for 100% of the deployment in the low-uptake scenario from Table S16.
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savings from rational siting and electricity source selection are

observed at the FOAK scale. The MgO ambient weathering pro-

cess is the most location and electricity source agnostic

economically, so technical performance and availability of

MgCO3 may be crucial to siting this technology. China is the

cheapest location for the FOAK cost in Figure 6. The lower costs

are primarily due to the decreased capital costs, as a result of the

low cost of labor, which has a knock-on effect on the cost of raw

materials. Location seems to be a more critical factor to cost

than electricity source when considering a FOAK plant apart

from the KOH BPMED process. As the capital costs decrease

with deployment, the source of electricity becomes more critical
904 One Earth 6, 899–917, July 21, 2023
at the Gt-CO2 year�1 scale. Brazil has the highest natural gas

price and highest natural gas carbon intensity, as shown in

Table S9, which penalizes the two processes using natural

gas, i.e., KOH-Ca looping andMgO ambient weathering, primar-

ily due to the gas price but also affected by the carbon intensity,

as seen in Figure 6. The methane leakage rate affects the two

processes that rely on natural gas, and thorough assessments

of the leakage rate associated with any local supply chain to

be used are required to integrate these data with techno-eco-

nomic analysis.

The non-intermittent sources of low-carbon electricity,

geothermal, hydro, and nuclear consistently are among the



(legend on next page)
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cheapest electricity options because of their lower carbon inten-

sity and constant supply. Meanwhile, Figure 6 shows that it is

never logical to use the current grid mix of electricity generation

to power solid sorbent or KOHBPMEDDACS. The exception is if

solar heat collectors or geothermal heat is available to supply

solid sorbent DACS, as shown by Figure S12. The technologies

that utilize natural gas for heat are not penalized as severely for

using the current grid mix of electricity, allowing the deployment

of these plants regardless of the gridmix. This is important as it is

difficult to justify the opportunity cost of pairing low-carbon elec-

tricity to DACS currently, compared to using it to decarbonize the

electricity grid.

Figure 7 presents a map showing low-carbon electricity avail-

ability and potential CO2 storage sites. While the distance from

CO2 storage does not strongly affect the net removed cost (as

shown in the sensitivity analysis in Figures S14 and S16), mini-

mizing the distance between DAC and the associated storage

will reduce the number of local stakeholders and decrease the

legal complexity of deploying any pipelines required.42,43 Figure 7

shows that sweet spots exist between the availability of CO2 stor-

age and low-carbon electricity. Some examples of these sweet

spots may be the north-east of the United Kingdom, east China,

or south-east Australia. However, it is essential to note that Fig-

ure 7 does not highlight all the critical geographical aspects. So-

cio-political aspects and variations in life cycle analysis factors,

such as local natural gas leakage rates, are examples.

A key limitation of this study is that we do not consider the

impact of climate on DAC technical performance. Some insight-

ful studies have been published recently that address this for the

solid sorbent and KOH-Ca looping technologies.44–46 In our solid

sorbent DAC process modeling, we assume a temperature of

15�C and relative humidity of 55%.Wiegner et al. find that, under

the extreme conditions of 30�C and 100% relative humidity, solid

sorbent capital costs increase by 40%, while energy consump-

tion also increases by 40%.44 However, at 5�Cand 100% relative

humidity, capital costs would be 30% less and energy consump-

tion would be 55% less. Meanwhile, Sendi et al. show that, with a

heat pump, solid sorbent electricity requirements vary by ± 25%

across the globe due to climate, and process productivity varies

by ±15% if temperatures below �15�C are avoided.45 The Keith

et al. study that our KOH-Ca looping techno-economic analysis

is based on assumes conditions of 21�C and 40% relative

humidity.12 An et al. show that costs may increase by 25% under

cool, dry conditions (5�C, 40% relative humidity) and decrease

by 15% under warm, humid conditions (30�C 100% relative

humidity) compared to this case.46 An analogy can be drawn be-

tween the KOH-Ca looping and the KOH BPMED technologies

as they use the same contactor design, and the variation in

cost due to climate stems from water loss and the CO2 capture

rate in the contactor.46 To the best of our knowledge, currently,

no studies analyze the impact of climate on the MgO ambient

weathering process.
Figure 6. Cost matrix comparing locations and electricity sources

Matricesshowdifferent locationandelectricity sourcecombinations for each techno

in $ t-CO2
�1 in text inside each square. (A–D) A FOAKplant paired to a heat pump for

been reached paired to a heat pump for low-grade heat where appropriate. It should

CO2 year
�1 scale panels all have the same color scale. Additionally, some KOH BP

of CO2.
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Policy support should be project catered
Assessing the cost of DACS is an important step, and lower

costs naturally provide a more robust business case. However,

DACS requires a critical mass to reach the scale necessary to

meet the cost constraints required to be self-sustaining. In this

sense, DACS will need policy support. We analyze the available

policy mechanisms, their purpose, and how they may affect the

short and long-term cost. A summary of all the policies investi-

gated is shown in Table S17, while the ones examined quanti-

tively can be found in Table S18.

Currently, the small market for removal credits generated by

DACS is supported by companies pursuing voluntary offsets.47

However, verification, including the storage and life cycle project

emissions and future monitoring, is currently (to an extent) based

on trust, and, although it is not concerning the voluntary market,

it should at least be standardized going forward.48,49 This agrees

with the 10 key policy recommendations from an expert inter-

view study by Sovacool et al., who suggested that ensuring

net-negative emissions, alongside certification and compliance,

is crucial.50 The work from Sovacool et al. contains many other

insightful recommendations and should be considered comple-

mentary to the quantitative work on policy and deployment

presented here.50 Another critical bottleneck for DACS deploy-

ment at scale is the availability of CO2 transport and storage

infrastructure. Developing transport infrastructure and storage

sites is capitally intensive, and significant economic advantages

can occur at larger scales.51–53 Sovacool et al. recommend co-

developing DACS with conventional capture, transportation,

and storage and harnessing storage hubs.50

Once the infrastructure and policy are in place for a DACS plant

to generate negative emission certificates, a large market is

required to sell these certificates to promote further deployment

and resulting cost reductions. So, we need to consider how to

create a largemarket. Ways of doing this could be integrating car-

bon removal into a subsidy, tax, or trading scheme, or regulating

companies to reduce or mitigate a proportion of their emissions

or, in the long term, have net-negative emissions.54 Beyond this,

advanced market commitments (AMCs) and contracts for differ-

ences (CfDs) are potential mechanisms for a DACS plant devel-

oper to receive a specific price for generating negative emissions

foraparticular time,providingaguaranteedmarket for aplant.55–57

In addition to market creation, accelerating scale-up is essen-

tial to encourage technological learning and decrease costs. As

discussed earlier and observed in Figure S15, capital costs

dominate FOAK plant economics. Hence, supporting these initial

investments is key to lowering early-scale deployment costs. In-

vestment grants or grants via public competitions to pay for the

capital expenditure can be used as policy instruments to help

reduce the removal cost for a FOAK plant. These may pay for

all of the capital costs, or there may be a cost-sharing structure.

There may be mechanisms to further encourage the cost reduc-

tions of such technologies, such as decreasing the sizes of
logy, coloredby themedian net removedcost,with the rangeof net removedcost

low-grade heatwhere appropriate. (E–H)A plantwhenaGt-CO2 year
�1 scale has

be highlighted that the FOAKpanels have differing color scales, whereas the Gt-

MED squares are gray when on the current grid mix row as they are net emitters



Figure 7. A map of the seven locations studied with low-carbon electricity and CO2 storage potential highlighted

Each of (A)–(D) shows a different country, as labeled. Adapted from Pilorgé et al. 2021 with renewable capacity factors from the IEA.42,88
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grants or specific cost-reduction targets that technologies must

meet for the funder to fund further projects. This is analogous to

the reduction in price cap enforced, for example, by the Dutch

government as part of their annual request for offshore wind ten-

ders.58,59 An alternative (and equivalent) to grants could be in-

vestment tax credits, which returns a percentage ofmoney spent

on capital when a tax equity partner is available.55

Another option that reduces the capital burden of early-scale

deployment would be to reduce the interest rates paid on the

investment. Forexample,Tesla (formerly TeslaMotors)washeavi-

ly supported by a sizable low-interest government loan during its

early years.60 A similar loan could be provided to DACS com-

panies. Other ways of reducing risk, and hence discount rate,

could be the implementation of feed-in tariffs, carbon subsidies,

or production tax credits, CfDs, or a regulated asset base (RAB)

model. An even larger reduction in the discount rate and net

removed cost could be achieved via a state-owned enterprise

since the state has a higher risk tolerance than the private sector.

However, thepotential implementationof these ishighlysubject to

the socio-political environment. A compromise could be a public-

private partnership (PPP) where a certain amount of risk is trans-

ferred onto the state from the private sector depending on the

exact PPP model chosen. However, there is debate over the

actual effectiveness of PPPs.61 Finally, tax-advantaged financing

structures could make investment more attractive. Examples are

Master Limited Partnerships, Real Estate Investment Trusts, or

Private Activity Bonds.62,63 A summary of the policies discussed

and their categorization is displayed in Figure 8. It should be noted

in Figure 8 therewill be an overlap between accelerating scale-up

and long-term cost reductions. For example, the RAB model

could also prove useful for accelerating scale-up if a regulator

and centralized market can be mobilized fast enough.
Figure 9 quantifies how a selection of such policy instruments

might affect the costs of CO2 removal via DACS. Meanwhile,

Table 1 shows the percentage cost reduction at the start and

end of the learning curves in Figure 9. The figure shows the me-

dian learning curves for net removed costs in the United States

paired to nuclear electricity and a heat pump for low-grade

heat where appropriate, while Figure S17 shows the full ranges

for the same case. Figure 9 is demonstrative, and the exact

values should be taken cautiously due to the uncertainty in the

cost discussed previously.

The presented learning curve for grants in this figure repre-

sents a scenario where a government wants to spend $3.5 billion

on grants (equivalent to the sum made available by the US gov-

ernment in their Bipartisan Infrastructure Bill of 2021) to pay for

the scale-up of a technology.64 Grants have a high potential to

reduce the FOAK costs, with a median reduction of 68% for

the solid sorbent process and around 58% and 63% for the

KOH-Ca looping and MgO ambient weathering processes,

respectively. Long term, grants benefit technologies most

when many small plants are built rather than one or two large

plants. For example, in Figure 9, the median costs for the

solid sorbent process will have come down from over $2,000

t-CO2
�1 to below $700 t-CO2

�1 once the grant runs out, a

decrease of over 65%. Themedian costs for the KOH-Ca looping

process can be brought down from approximately $375 t-CO2
�1

to just under $350 t-CO2
�1 with the same grant size, a reduction

of less than 10%. This is because the assumed FOAK plant size

of the KOH-Ca looping process is much larger than the assumed

FOAK plant size of the solid sorbent process. A sensitivity anal-

ysis is available in Figure S18 that shows how the curves in Fig-

ure 9would be different if the FOAK plant size is 36 kt-CO2 year
�1

for solid sorbent DAC and 100 kt-CO2 year�1 for all other
One Earth 6, 899–917, July 21, 2023 907



Figure 8. A selection of different policy levers available to support DACS

A complete list of policies considered and their relations to the cost reductions in Figure 9 is available in in Table S17.
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technologies. In this scenario, the median costs for the solid sor-

bent process will decrease from over $1,600 t-CO2
�1 to around

$950 t-CO2
�1 once the grant runs out, a decrease of 41%.

Meanwhile, the median costs for the KOH-Ca looping process

can be brought down from approximately $575 t-CO2
�1 to

around $390 t-CO2
�1 with the same grant size, a reduction of

about 30%. The long-term impact of grants is much reduced

for solid sorbent DAC and increased for KOH-Ca looping DAC

compared to the base case. In summary, for any technologies,

grants are better spent on many smaller modular plants, as

this allows learning to occur faster. Meanwhile, when grants

end, it should be evaluated whether it is worth switching to an

economies-of-scale approach for any given technology.

The "state" learning curve shows the potential impact of

providing state-backed loans in Figure 9. They also have a

considerable potential to reduce FOAK costs. For example,

this reduction is 34% for the MgO looping ambient weathering

process. These large initial reductions are another promising

route to accelerating scale-up. In this case, the loan will likely

be repaid, in contrast to grants, where themoney is never repaid.

This means the cost to the government will be lower and will be

essentially the risk of the loan not being paid back. It is important

to note that we leave this label simply as state, as the same curve

could be relevant to a state-run enterprise. The impact

of the lower discount rate is commensurate to the sensitivity

analysis results in Figures S14 and S16, where the discount

rate is the fourth most influential factor on FOAK costs for all

technologies apart from KOH BPMED, where it is seventh.

In Table 1, we see that, at the Gt-CO2 year�1 scale, the cost

reductions achieved by the RAB model and CfDs for the MgO

ambient weathering and KOH-Ca looping processes are more

prominent than for the more modular technologies. This is

because the technologies have lower learning rates and have un-
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dergone fewer doublings. Hence, they retain a higher proportion

of their costs as capital costs, which are the costs affected by a

reduction in the discount rate achieved by these policies. Never-

theless, for all technologies, these two policies have a consider-

able impact at the Gt-CO2 year
�1 scale, with median reductions

of up to 3% and 17% for CfDs and an RAB model, respectively,

in the case of the MgO with ambient weathering process. If we

make an analogy with the electricity market, for example, a

reduction of 17% in cost would have a significant and positive

impact on the consumer. In the case of an RAB model, the extra

cost is to organize the regulatory body to regulate a centralized

market. So, this cost would need to be balanced against the

cost reductions achieved.

There are promising approaches to encourage the scale-up

and drive future cost reductions of DACS. State-backed loans,

grants, and investment tax credits are all encouraging options

to achieve this. The approach chosen will depend on the political

and economic environment within the country of interest. There

are also possibilities to reduce the long-term costs in the future

using policies such as CfDs and an RAB model. Here, the

benefits of these approaches should be weighed against their

respective costs to make an informed decision on which path

to pursue. It is also crucial not to neglect the impact of innovation

and the feedback loop between deployment and innovation. As

identified by Kittner et al. and Sovacool et al., research and

development needs support alongside deployment to achieve

the maximum technological learning rates and ensure the lowest

long-term cost possible.22,50

Limitations
As previously discussed, ex ante costing studies contain much

uncertainty, increasingly so for technologies further down the

TRL ladder. Still, they are critical to inform the public and policy



Figure 9. Median net removed costs of each DACS technology with different policies

This is for the United States paired with nuclear electricity and a heat pump for low-grade heat where appropriate. The full range of possible values is found in

Figure S17. The variation in the discount rate by the policy is shown in Table S18.
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domain. To ensure their utility, it is vital to understand how the re-

sults of techno-economic studies are produced, what can be in-

ferred from them, and where the potential weaknesses of the

study are. One method specifically developed to evaluate and

communicate the strength of quantitative science for policymak-

ing is the Numeral Unit Spread Assessment Pedigree (NUSAP)

method, which includes pedigree analysis to provide a system-

atic qualitative assessment of the strength of quantitative

information and models.65–68 We here performed a rudimentary

pedigree analysis (Table S20 and Figures S19–S30), which the

reader can view as a reading guide and should be consulted

when reproducing or using our results. The pedigree analysis
highlighted some limitations to our work that are not immediately

apparent. To summarize, the key limitations of our work are the

independence of the source data and validation for the KOH-

Ca looping process from Carbon Engineering and the lack of

field validation of the MgO ambient weathering, KOH-Ca loop-

ing, and KOH BPMED processes. In addition, DAC deployment

numbers used in the scenario analysis rely on integrated assess-

ment modeling, which assumes certain costs. The cost results in

this work will likely affect these deployment numbers. Further-

more, the impact of location on technical process performance

is not assessed. This is discussed earlier, regarding recent liter-

ature that addresses this. Also, the locational data available for
One Earth 6, 899–917, July 21, 2023 909



Table 1. Median cost reductions achievable for each policy and technology combination

Technology CfDs (%) RAB (%) State (%) Grant $3.5b (%)

Scale FOAK Gt-CO2 year
�1 FOAK Gt-CO2 year

�1 FOAK Gt-CO2 year
�1 FOAK Gt-CO2 year

�1

KOH-Ca looping 4.0 2.8 20.6 14.8 31.0 22.2 58.1 N/A

KOH BPMED 1.3 0.2 6.5 1.3 9.8 1.9 18.4 N/A

Solid sorbent 4.7 1.6 24.2 8.4 36.4 12.7 68.0 N/A

MgO ambient weathering 4.3 3.3 22.4 17.1 33.6 25.8 62.8 N/A

Median cost reductions from the original cost achieved for different technologies and policies at two scales, FOAK and Gt-CO2 year
�1 extracted from

Figure 9. This is for the United States paired with nuclear electricity and a heat pump for low-grade heat where appropriate. N/A, not applicable.
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Oman are limited, meaning proxies were often required instead

of exact values for that location. Finally, the results generally

have a large uncertainty margin, mainly caused by capital cost

uncertainty, highlighting the detailed engineering work required

to hone in on the capital costs of the different technologies at

scale. This includes the detailed design and operation of pilot

plants in the field alongside the distribution of the results publicly.

Conclusions
This work sought to answer the question, "Where are the costs of

DACS heading, and what influence does siting and policy have

on the costs?" by estimating ranges for the current and future

costs of four case study DAC technologies paired with CO2

transport and storage. Unlike previous studies, we utilized a

hybrid costing approach that is consistent with the TRL of

DACS. We performed this analysis across seven different coun-

tries, four sources of low-carbon electricity as well as the current

grid mix, and a selection of policy interventions. From this anal-

ysis, we drew the following key insights that are relevant to a

wide range of stakeholders across academia, industry, policy-

making, and investment.

First, it is unlikely that the costs of DACS will reach the aspired

$100 t-CO2
�1 target. Our study forecasted that the costs will

reduce, at theGt-CO2 year
�1 scale for a plant in theUnited States

paired to nuclear electricity and a heat pump for low-grade heat

where applicable, to (1) $100–440 t-CO2
�1 for KOH-Ca looping,

(2) $450–1,350 t-CO2
�1 for KOH BPMED, (3) $170–730 t-CO2

�1

for solid sorbent, and (4) $100–540 t-CO2
�1 for MgO ambient

weathering. The lower bounds of these ranges are only attainable

if very high learning rates are achieved (�15%–19%), capital and

energy are cheap (�$0.09 kWh�1
electricity and�$3GJ�1

natural gas),

and there is a very strong reduction in energy require-

ments (�50%).

Second, pairing electricity-driven DACS to highly intermittent

renewables is not a promising strategy as the net removed

cost highly depends on the plant capacity factor. Instead, grid

electricity needs to be decarbonized as a priority. The perfor-

mance of larger-scale and predominantly natural-gas-powered

processes does not strongly depend on the carbon intensity of

grid electricity, but the natural gas supply chains should be thor-

oughly reviewed to avoid the negative effects of methane

leakage, including an increase in net removed cost.

Third, strong and holistic government policy is paramount to

drive down the cost of DACS and should include short-termmar-

ket creation and technology-enabling instruments, as well as

policy to support scale-up and long-term cost reductions. It is

more beneficial to spend a capped pot of investment grants on
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several smaller plants to enhance learning, while policies that

reduce the cost of capital may aid large-scale projects more.

Policy support can target multiple technology types at the

same time. We do not need to pick a winning technology now.

Cost reductions via technological learning in a scenario with

four competitors were similar to a scenario with only one domi-

nant technology.

Key actions identified by this study are that (1) we should begin

scaling DACS now alongside research and development in order

to bring down costs long term, (2) policy support should aim to

progress a suite of DACS technologies while (3) catering to the

different needs of specific DACS technologies to achieve this.

Also, (4) integrated assessmentmodeling should be reperformed

with more realistic DACS costs than the ones previously used, to

assist in understanding the role of DACS for preventing the worst

impacts of climate change, which in turn should aid policy and

investment decisions. Finally, (5) electricity grids need to be dec-

arbonized faster to provide low-carbon-intensity electricity for

DACS and, equally, methane leakage from natural gas supply

chains should be targeted with greater ambition than the 30%

reduction pledge agreed at the 26th Conference of Parties.69

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Requests and questions should be directed to Mijndert van der Spek at M.

Van_der_Spek@hw.ac.uk.

Materials availability

No materials were used directly as part of this study.

Data and code availability

Data points of all learning curves across all technologies, locations, electricity

sources, and heat sources alongwith the data from the policy learning curves

in Figure 9 are contained in individual .csv files in the zip file available online at

the following link: https://github.com/johnyoung1996/young_et_al_2023_

DAC_TEA.

Methodology

The costing approach applied here uses the aforementioned hybrid costing

method, which combines engineering-economic bottom-up calculations of

the cost of a FOAK plant and technological learning-curve projections (a

top-down method) to estimate how costs may develop as a result of mass

deployment. The techno-economic assessment model is discussed first.

The technical performance estimates are based on the existing literature for

all but the solid sorbent technology, for which we used our own modeling,30

briefly discussed later. Because the impact of location on the economics of

DACS is largely missing from the literature, we estimated DACS costs for

seven geographically and economically diverse case study countries (United

States, China, the United Kingdom, Germany, Brazil, Australia, and Oman)

by assessing the variation of different economic parameters across these lo-

cations, detailed after the section ‘‘techno-economic model.’’ These case
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Table 2. Rational FOAK plant size of each technology

Technology FOAK scale [kt-CO2 year
�1] Reasoning

KOH-Ca looping 980 used the value provided by Keith et al., as this is used to assess an "early

plant" cost estimate.12 The study highlights that the minimum practical

scale is 100 kt-CO2 year
�1. However, there are significant cost

advantages to operating at 1,000 kt-CO2 year
�1 due to the economies of

scale of the calciner and the slaker.12,84 It is important to note, however,

that the contactors are a modular component

KOH BPMED 46 the original study from Sabatino et al. studied a plant at a 1,000 kt-CO2

year�1 scale.29 However, most of the system’s components are modular,

so very few economies of scale are utilized when they scale to this size for

a first plant. For this reason, we scaled the process down to one

electrodialysis stack. Information on this is available in the caption of

Figure S4

Solid sorbent 0.96 the scale chosen here was the two units operated in Hinwil, Switzerland,

by Climeworks.102 This technology is inherently highly modular,

particularly the contactors. The maximum size of systems operating

under vacuum is limited by the mechanical stress, which increases

linearly with unit size. This limits the scale that one module can reach,

adding to our choice for this relatively small scale as a FOAK size

MgO ambient weathering 1,100 the size was chosen to remove 1,000 kt-CO2 year
�1 at a 90% plant

capacity factor. This process uses the same type of calciner as the

KOH-Ca looping process, so similar arguments can be made about the

optimal scale being influenced by the calciner12,84

Assumed FOAK design scales for each technology and the corresponding justification for choosing this size. A sensitivity analysis on this parameter is

available in Figures S1–S4.
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studies allowed us to explore siting decisions based on the availability of low-

carbon energy sources, cost of materials and labor, etc., while also acknowl-

edging that complex factors beyond costs (e.g., political and geographic)

exist. Finally, we investigated which policies are required to reduce the cost

in the short and long term, further detailed last. Importantly, we provide all re-

sults as cost ranges instead of point estimates, given the very high uncer-

tainties of ex ante projections of NOAK costs.

Techno-economic model

Bottom-up engineering-economic model

The bottom-up part of the framework produced the FOAK costs for the four

technology archetypes. The techno-economic framework developed in this

work is based on the International Energy Agency’s Greenhouse Gas

Research and Development Programme’s (IEAGHG’s) framework,70 adapt-

ing it for consistency with recently published guidelines for the cost estima-

tion of CO2 capture and storage projects, published by IEAGHG, the United

States Department of Energy National Energy Technology Laboratory (DOE/

NETL), and the Electric Power Research Institute (EPRI).21,71–74 First, rational

FOAK scales were selected for each technology. These are available in Ta-

ble 2, including the reasoning behind their selection. The FOAK scale differs

for different types of technologies as a function of their design. The selection

of the FOAK scale is important to technological learning, as it provides the

starting point for cost reductions and determines how many doublings

take place when deployment increases to a certain level; therefore, the

impact of this choice is further discussed in the section ‘‘results and discus-

sion.’’ Then, the capital costs were built up from the installed equipment

costs and are in 2019 US dollars. A critical element here was to differentiate

between the different TRL levels of the four technologies. This was ac-

counted for by varying the process contingencies as a function of TRL, as

per guidelines by Rubin and a recent white paper published by, DOE/

NETL, and IEAGHG.21,71–75

Note that the KOH BPMED and MgO ambient weathering installed equip-

ment costs were scaled down as the details in literature were for plants larger

than the here-assumed FOAK scale.29,31 The scaling methodology is identical

to that used in Figures S1–S4 and is detailed in the captions of these figures.

The installed equipment costs are available in Table S1.
To calculate the capital costs, first, the costs of engineering, procurement,

and construction (EPC) were calculated according to Table S2. Next, the

EPC costs were escalated to those of a FOAK commercial project using

the process and project contingencies, and owner’s, spare parts, and

start-up costs to arrive at the total overnight cost (TOC), as defined by Rubin

et al. and detailed in Tables S3 and S4.73 The inclusion of appropriate project

and process contingencies, which are representative of the development

stage of a technology and the level of detail in the project design, is lacking

in all but a very few ex ante techno-economic studies of climate-change-miti-

gation process technologies.71,74 The project contingencies take into ac-

count costs not considered in the analysis due to the preliminary level of

project specification. Meanwhile, process contingencies account for any un-

certainty surrounding capital costs on account of the technology maturity of

a process and the cost of upscaling that accompanies this. Therefore, the

process contingency is higher for low-TRL technologies as they are more

likely to incur extra costs while developing through unforeseen issues that

must be addressed with process adjustments or a change of operation.

The process contingencies used for each technology (as function of their

TRL) can be found in Table 3.

The resulting TOC was then annualized and levelized using the capital re-

covery factor calculated from the assumed location-dependent discount

rates, a plant life of 25 years, and 90% capacity factor unless paired to inter-

mittent renewables to arrive at a levelized capital cost. The accuracy of the

FOAK capital cost calculation was assumed to be�30% to +50%of the calcu-

lated value, which the Association of the Advancement of Cost Engineering

(AACE) expects for a class 4 estimate.76

Details of the fixed operating and maintenance and the variable operating

costs are available in Tables S5 and S6. The sum of the levelized capital costs,

fixed operating and maintenance, and the variable operating costs was then

escalated to the net removed cost, as shown in Equation 1, using the calcu-

lated GHG emissions from the processes.

For this calculation, only energy-related emissions were considered as it has

been shown that these dominate in life-cycle analysis of the greenhouse gas

emissions of DAC technologies.12,77,78 The carbon intensities of the electricity

sources across different locations were calculated using SimaPro and the

EcoInvent v3.8 database and are shown in Table S7.79 Meanwhile, the
One Earth 6, 899–917, July 21, 2023 911



Table 3. Process contingencies and capital cost learning rates selected for this study and the justification

Parameter

KOH-Ca

looping

KOH with

BPMED

Solid

sorbent

MgO ambient

weathering

Process

contingency

TRL 6 4 7 4

minimum (% of EPC) 20 30 5 30

middle (% of EPC) 30 50 20 50

maximum (% of EPC) 35 70 20 70

Capital cost

learning rates

minimum (%) 5 10 10 5

middle (%) 10 14 14 10

maximum (%) 15 19 18 15

analogous technologies flue gas desulfurization,

coal power plant,

integrated gasification

combined cycle power,

air separation units

electrolysis, fuel

cells

modular

technologies.

Fuel cells,

photovoltaic

solar panels

flue gas desulfurization,

coal power plant,

integrated gasification

combined cycle power,

air separation units

Malhotra and Schmidt

type and corresponding

learning rate in brackets23

2 (10%–15%) 2 (10%–15%) 2 (10%–15%) 2 (10%–15%)

This is the TRL for process contingency as suggested by the AACE and EPRI,73,76 and the analogous technologies plus level of modularity for the

learning rate. Thewhite paper by Roussanaly et al. was used as a reference to select the analogies and corresponding learning rates, while theMalhotra

and Schmidt typology allowed us to verify this further.21,23
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associated values for grid electricity are shown in Table S8. Upstream natural

gas emissions in different locations were calculated using a previous study on

methane leakage rates across the world, and the carbon intensity values

calculated are shown in Table S9.80 Across our case studies, these leakage

rates vary between 0.26% and 2.21%. The carbon intensity of gasoline was

assumed to be a constant value of 66.97 kgCO2,eq GJ�1.81 The carbon intensity

of dedicated geothermal heat and solar thermal energy were extracted and

scaled from previous studies based on different locational factors. More de-

tails can be found in Table S9.82,83

The costs of net CO2 removed are:

CNR =
CGC

1 � X
(Equation 1)

In Equation 1, CNR ($ t-CO2
�1) is the net removed cost, CGC ($ t-CO2

�1) is the

gross capture cost, and X (t-CO2,eq t-CO2
�1) is the GHG emissions accounted

to the process per tonne of CO2 captured.
84 As a result, we obtained the FOAK

net removed costs.

Top-down technological learning projections

The FOAK capital and variable operating costs were then extrapolated into the

future using learning rates and Equations 2 and 3.

b = � lnð1 � LrÞ
ln 2

(Equation 2)

y = ax�b (Equation 3)

Where b (�) is the learning exponent, Lr (�) is the learning rate, y ($ t-CO2
�1) is

the current capital or operating cost, a ($ t-CO2
�1) is the FOAK capital or oper-

ating cost, and x (�) is the ratio of existing capacity to the initial capacity of the

technology.21

Given that all DAC technologies are yet to fully commercialize and prog-

ress along the learning curve, capital cost learning rates must be selected

as no observed values are available. This is inherent to ex ante technology

assessment and relies to an extent on judgment, but guidance is available

to structure the selection. IEAGHG guidelines propose breaking technolo-

gies down into subsections and use learning rates reported for technolo-

gies that are identical or similar to each of the subsections.71 Given no

identical technologies exist, they propose using learning rates from analo-

gous technologies as a proxy. If this is not possible, they suggest using
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expert elicitation (recently applied to DACS by Sievert et al.85) or general

heuristics on observed learning rates. For example, "the highest learning

rates (e.g., 20–30%) are typically associated with smaller-scale technolo-

gies that are modular in nature and amenable to mass production" and

"learning rates are significantly lower [e.g., 10–15%] for large-scale process

systems and technologies that are typically field-erected and designed for

a unique site or size."71 Malhotra and Schmidt systematized such general

heuristics into a matrix that compares the degree of design complexity of

a technology with its need for customization to its use environment.23

The high learning rates achieved by the modular technologies are analo-

gous to the high learning rates achieved by wind and solar power, fuel

cells, and electrolyzers, which are enabled by mass production, along

with the ease and speed of implementing research and development

breakthroughs into the system.21 Another reason behind the higher learning

rate is their potential to gain learning from other industries, such as CO2

supply to niche markets in the case of DAC (i.e., via diversification).86 How-

ever, large-scale plants may be better suited to supply CO2 to large-scale

utilization processes, such as a sustainable aviation fuel plant. We applied

both analogies and Malhotra and Schmidt’s typology to the four DAC tech-

nologies investigated here, and this is presented in Table 2. Note that the

Malhotra and Schmidt typology leads to identical learning rate ranges

(10%–15%) for each technology.23 We captured the lowest and highest

capital cost learning rates predicted by the analogous technology approach

and the Malhotra and Schmidt approach to use as our final range of

learning rates.

In the techno-economic model, the fixed operating and maintenance

costs are highly coupled to the capital costs. Hence, these fixed operating

and maintenance costs reduce with the reducing capital costs. The recently

published guidelines on cost evaluations for carbon capture and storage

explain in detail why fixed operating and maintenance costs will be higher

for a FOAK plant compared to a NOAK plant.21,71 However, the variable

operating costs are not linked to the capital costs, so we selected separate

learning rates for these costs. Assuming an equal proportion of this learning

is applied to a reduction in energy consumption, we set a maximum

second-law efficiency limit of 20%. This number is based on a previous

study that suggested this could be an optimistic limit for solid sorbent

DACS.87 Using the same underlying assumption on the relationship be-

tween variable-operating-cost learning and learning on energy consump-

tion, we also assumed the learning was reflected in a reduction of

energy-based emissions of the process. The same variable-operating-cost
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learning rates were chosen for all technologies with a minimum of 0%, a

maximum of 5%, and a median value of 2.5%. The 5% value is the same

as the observed operating-cost learning rate for oxygen production.21 We

then calculated the NOAK net removed cost using the same approach

used for a FOAK plant with the levelized capital costs, levelized fixed oper-

ating and maintenance costs, levelized variable operating costs, and

process emissions.

Locational analysis

The economic parameters that were varied across locations are detailed in

Tables S7–S11. These include the discount rate, materials and construction

costs, CO2 transportation costs, operator salary and productivity, and energy

prices and carbon intensities. The sources of electricity considered were grid,

intermittent renewables, hydroelectricity, geothermal, and nuclear. Mean-

while, solar heating and geothermal heating were considered as alternatives

to a heat pump to supply low-grade heat.

Note that we assumed that a DACS plant can be paired to each electricity

source without adjustment apart from intermittent renewables. In this case,

the DACS plant capacity factor was assumed to be the minimum from the

intermittent renewable capacity factor and the assumed maximum DACS

plant capacity factor of 90%. The possible ranges of intermittent renewable

capacity factors for each country were identified in an International Energy

Agency (IEA) report on DAC, available in Table S11.88 The IEA report pro-

vides global intermittent renewable energy capacities assuming the

maximum capacity factor between solar photovoltaic and wind. The lowest

capacity factors provided are generally found inland, and the highest in

coastal regions or offshore. Therefore, we assumed the worst-case intermit-

tent renewable capacity factor to have the electricity cost and carbon inten-

sity associated with solar electricity, while the best-case intermittent renew-

able capacity factor was assumed to have the electricity cost and carbon

intensity associated with wind electricity. The middle values of capacity fac-

tor, cost, and carbon intensity were assumed where median values were

needed.

Solid sorbent process modeling

The basis for the solid sorbent temperature vacuum swing adsorption process

was two units containing 18 contactors each, as is the set-up at the Clime-

works plant in Hinwil, Switzerland.89 The contactor design was based on a

2020 patent, and the sorbent used is Lewatit VP OC 1065 due to its commer-

cial availability.90 Note that the heating mechanism of the contactor in this pat-

ent is indirect via pipes inside the sorbent bed and not using steam stripping.

We used a model and Lewatit VP OC 1065 data from previous work to calcu-

late the energy and productivity values of a process optimized for maximum

productivity as shown in Figure S5.30 Here, we adjusted the sorbent volume

based on one plate in the chosen contactor design and calculated a heat trans-

fer coefficient using a one-dimensional radial approximation around a heat

transfer pipe, as presented and discussed in Figure S2 and S3. The parame-

ters used can be found in Tables S12–S14. Afterward, we built up a flow

diagram of the process and assessed the equipment requirements and costs

based on this. This flow diagram and the cycle design, as well as schematics of

the column internals relevant to flow and heat transfer, can be found in

Figures S6 and S8–S10. All the calculated costs and their sources can be

found in Tables S1 and S15.

We considered natural gas only for the two processes powered by high-

grade heat, i.e., KOH-Ca looping and MgO ambient weathering, since the

process configurations reported both use natural gas in an oxy-fired

calciner.12,31 Nevertheless, we did investigate the impact of low-grade heat

choice on the solid sorbent process. The three investigated low-grade heat

sources are electricity with an air-source heat pump, dedicated geothermal

heating, and solar heating. Figure S11 compares the effect of different

heat sources on net removal cost, and we find that all of the options have

the potential to be competitive, but, for simplicity, we selected a heat

pump to use in the analysis for the rest of this study due to its lower median

cost estimate. Here, we assumed a coefficient of performance (COP) of 2,

which is consistent with an 85�C temperature rise, and we did not consider

the effect of location.91 There is also the option of using waste heat, espe-

cially for FOAK and pilot plants. This will reduce the early costs, supporting

initial scale-up, but this is expected not to significantly affect cost at the
scale of carbon removal we will require.92 Figure S12 further compares the

heat sources for solid sorbent DACS powered by grid electricity in the US.

Due to the high carbon intensity of grid electricity, solar and geothermal

heat becomes much more attractive compared to when low-carbon elec-

tricity is available.
Scenario illustration and policy investigation

As a thought experiment, we opted to illustrate how the learning curves may

translate into costs in specific years and defined two extreme technology

uptake scenarios (Table S16). In one scenario, we took the least-aggressive

DACS uptake possible from integrated assessment modeling that still meets

the 2�C or 1.5�C scenarios based on analysis from the IEA, Realmonte et al.,

and Fuhrman et al.2,40,41 Meanwhile, the second scenario was based on the

most aggressive possible DAC uptake to meet either the 1.5�C or 2�C sce-

narios using the analysis from the IEA and Fuhrman et al.40,41 Within these

scenarios, we allowed for a 25% technology dominance or a 100% technol-

ogy dominance to understand the effect of future DAC market share. To

demonstrate the scenarios, the total DACS scale in 2050 varies from

0.01–11.9 Gt-CO2 year�1, and in 2100 this increases to 1.8–31.6 Gt-

CO2 year�1.

We also wanted to assess DACS policy needs and the potential impact of

different policies on the DACS learning curves. As a result, we performed a

comprehensive literature review on policy options. To examine the impact of

different policies on DACS costs, four policies of interest that cover a wide

range in the policy design space were identified and quantitatively exam-

ined. A comprehensive list of the policies investigated as part of the litera-

ture review and their relation to the four policies analyzed quantitatively can

be found in Table S17. The four policies selected for quantitative investiga-

tion were (1) investment grants, (2) CfDs, (3) an RAB model, and (4) state-

owned DACS facility or a DACS facility fully backed by a state loan. Invest-

ment grants are capital supplied to support projects without any expected

return from the granter. CfDs allow a fixed price to be paid for a product

for a particular duration. Any deviation from the market price from this fixed

price is paid for by the CfD broker, which in this case is likely to be a gov-

ernment or consumer. We assumed the duration of the CfD was for the

whole project. An RAB allows a project developer to start receiving payment

for their product during the project’s construction phase before operation

begins. This is done through an agreement between the project developer

and a regulatory body. In addition, the price charged during operation is

also set by the regulator rather than an open market. Finally, a state-owned

DAC facility or a DAC facility backed by state loans could take advantage of

the low interest rates available to a government through their high-risk

tolerance.

The location of the DACS plant for the policy analysis was the United States,

whilst the electricity source was kept constant. This was utilizing nuclear elec-

tricity with a heat pump for low-grade heat where required. This was chosen as

an example, and it is likely that the results would vary by location, especially for

the policies where the government takes on risk from the project developer, as

the risk tolerance, and hence bond yields, of governments across the world

vary significantly.93 The analysis of investment grants was based on a scenario

where a government wanted to grant $3.5 billion of cash to scale up DACS,

equal to the grant size that the United States government is committing to

developing "DAC hubs.’’64 In our scenario, the money was then used to pay

for the capital expenditure directly with no interest until the $3.5 billion runs

out. The same learning rates are assumed as in a scenario without grants.

Then, the reduction of investment risk was found to be the main impact

reducing the DACS cost directly in the case of CfDs, RABs, and state-owned

facilities/state-backed loans. By drawing analogies with other markets and

technologies, we assessed the potential decrease in the discount rate on ac-

count of each of these three policy options.94–101 These reductions are found in

Table S18. Finally, the impact of the reductions on the cost learning curves was

analyzed.
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1. Masson-Delmotte, V., Zhai, P., Pörtner, O., Roberts, D., Skea, J., Shukla,

P.R., Pirani, A., Moufouma-Okia, C., Péan, C., Pidcock, R., et al. (2018).
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